- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- A Parkes “Murriyang” Search for Pulsars and Fast Transients in the Large Magellanic Cloud 11 Jul, 2022
- A Comparison of Multiphase Magnetic Field Tracers in a High Galactic Latitude Region of the Filamentary Interstellar Medium 11 Jul, 2022
- The First Observation of Additional Ionospheric Layers Over Arecibo Using an Incoherent Scatter Radar11 Jul, 2022
- Decoding the star forming properties of gas-rich galaxy pairs11 Jul, 2022
- Crater Ejecta Across Maxwell Montes, Venus, and Possible Effects on Future Rock Type Measurements 11 Jul, 2022
- On Single-pulse Energies of Some Bright Pulsars Observed at 1.7 GHz11 Jul, 2022
- Probing the Local Interstellar Medium with Scintillometry of the Bright Pulsar B1133 + 16 11 Jul, 2022
- Arecibo Celebrates National Engineers Week 06 Apr, 2022
- The Arecibo Observatory at the Upcoming 240th American Astronomical Society Meeting06 Apr, 2022
- The Arecibo Observatory Survey Salvage Committee Report06 Apr, 2022
- Facilities and Operations Update06 Apr, 2022
Arecibo REU Student Publishes AO Radar Study on Large Potentially Hazardous Asteroid
Byfrancisco.torres15 March 2022 Planetary

Planetary | Image credit: NASA |
Riley McGlasson, a 2018 Research Experience for Undergraduates (REU) summer student at the Arecibo Observatory, published a detailed study of the asteroid 1981 Midas in the Planetary Science Journal. The analysis combined radar data from the Arecibo Observatory and NASA’s Goldstone Deep Space Communications Complex with optical data from telescopes across the world to provide a comprehensive mathematical description of the asteroid’s shape, its spin rate, its orientation in space, and the gravitational slopes across its surface. + Read More