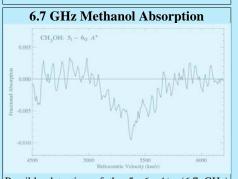

Arecibo Molecular Line Search of Arp 220: The Discovery of Pre-Biotic Molecules

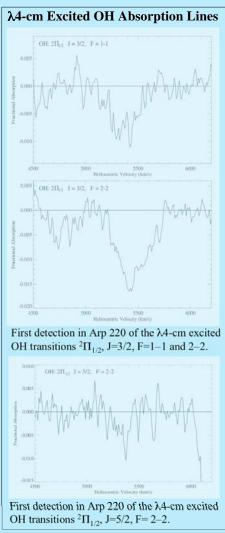
E. Momjian, C. Salter, T. Ghosh, B. Catinella, M. Lebron, M. Lerner & R. Minchin (NAIC-Arecibo Observatory)

ABSTRACT

An on-going Arecibo line search between 1.1 and 10 GHz of the prototypical starburst/megamaser galaxy, Arp 220, has revealed a spectrum rich in molecular transitions. These include the pre-biotic molecules: methanimine (CH_2NH) in emission, three v_2 =1 direct 1-type absorption lines of HCN, and an absorption feature from either ¹⁸OH or formic acid (HCOOH). In addition, we report three transitions of λ 4-cm excited OH not previously detected in Arp220 which are seen in absorption, and a possible absorption feature from the 6.7 GHz line of methanol. Our results mark the first distant extragalactic detection of methanimine, a molecule with high relevance to the origins of life. Further, the strong, previously undetected, cm-wave HCN lines can aid the study of dense molecular gas and active star-forming regions in this starburst galaxy.

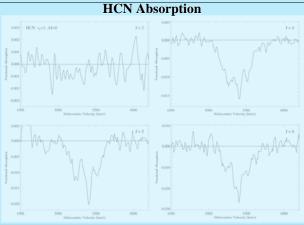


The emission spectrum of the blended six 1_{10} – 1_{11} multiplet transitions of methanimine (CH₂NH). The six transitions are indicated by vertical lines. This detection very likely represents a megamaser emission, similar to that of formaldehyde in Arp 220. Methanimine is a pre-biotic molecule which can form the simplest amino acid, glycine (NH₂CH₂COOH), either (1) by first combining with HCN to form aminoacetonitrile (NH₂CH₂CN), with subsequent hydrolysis, or (2) by directly combining with formic acid.



Formic Acid or ¹⁸OH Absorption? Output Out

This absorption line(s) could be either formic acid or ¹⁸OH. Their expected locations are indicated by horizontal bars. The band is affected by RFI from Glonass at ~1605 MHz but the authenticity of the dominant absorption feature has been verified by its non-appearance in the spectra of the bandpass calibrator.



Possible detection of the 5_1 – 6_0 A^+ (6.7 GHz) methanol line in absorption in Arp 220. If confirmed, this will be the first 6.7 GHz methanol detection beyond the local group.

The spectra to the

The spectra to the right show the first astronomical detection of the v_2 =1 direct l-type absorption lines of HCN with vibrational levels J=4, 5 and 6. The non-detection of the J=2 vibrational level is also included in the figure.

Observations

- ➤ Used various receivers on the Arecibo 305-m telescope to make an almost-complete spectral scan of Arp 220 between 1.1 and 10 GHz, with a spectral resolution of 24.4-kHz.
- Employed the WAPP spectrometer in its recently-commissioned "dual-board" mode that enables the use of eight, 100-MHz boards, to cover a band of 800 MHz at a single time, recorded in both orthogonal polarizations.
- ➤ Observed via a modified version of the Double Position Switching technique; a 5-min on/off observation is made on Arp 220, followed by a 1-min on/off on the bandpass calibrator, J1531+2402.