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ABSTRACT

A set of explicit approximation formulas to relate correlation as measured by a 3-level digital
autocorrelator to the true correlation has been developed. These formulas are accurate to much
less than 0.5%, and are also applicable to the more general case of a cross correlator. With the
help of numerical simulations, the effects of the drifts of the transition levels on the power
spectrum and the inaccuracy of the formulas have been studied. In the cases studied, which are
representative of practical applications, the deviations from the scaling are less than 0.5% of
the peak signal. We conclude that the inaccuracies inherent in the reduction methods and drifts
in transition levels do not give rise to any significant errors in observed power spectra.

I. INTRODUCTION

Three-level digital correlators are being increasingly
used in radio astronomy, and have entirely displaced
one-bit correlators in modern designs. Many properties
of these correlators have been considered theoretically
by Cooper (1970), Hagen and Farley (1973), Bowers
and Klinger (1974), and Thompson (1973). In this paper
we derive convenient approximations to, and consider
the accuracy required of, the numerical conversion of the
measured correlation to the true correlation function.

A 3-level correlator quantizes the input signal V(¢)
into levels —1, 0, or 1, depending on whether V() lies,
respectively, between — and the negative transition
level ao, between ao and the positive transition level co,
or between co and «. Here o is the rms input voltage.
This quantization is represented by a transfer function,
g(V(¢)); from the standpoint of signal-to-noise ratio, the
optimum values of |a| and ¢ are 0.6120 (Thompson
1973).

Let r(z) be the autocorrelation function of V(¢), as
measured by a 3-level correlator. Let p(z) be the corre-
sponding quantity which would be measured by a perfect
analog correlator. Then,

p(z) < (V()V(1 + 2)),
r(z) « (g(V()g(V(t + 2))), (1

where the brackets indicate time average. Hereinafter,
we assume that p is normalized, i.e., p(0) = 1, and that
r(z) is the ratio of the counts in channel with delay z to
the total number of samples performed. The relation
between p(z) and r(z) depends on the statistics of the
signal. If V(¢) is Gaussian random noise, as is always
assumed in radio astronomy, then

r(z) — r(«)
= (2m)~! fp( )dx(l — x2)71/2(exp[—c?/(1 + x)]

+ exp[—a?/(1 + x)]
+ 2 exp{(2acx — a2 — c?)/[2(1 = x?2)]}). (2)
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This is a simple extension of the results of Hagen and
Farley (1973), who considered the case —a = ¢ only;
r() is zero only when —a = c.

II. APPROXIMATIONS TO EQ. (2)

Equation (2) cannot be represented exactly in closed
form. We have developed approximations for two ranges
of p(z) by the methods outlined in Appendix A. The
lower inversion approximation, valid for |p| < 0.86, can
be carried to arbitrary order; the upper inversion ap-
proximation, valid for | p| > 0.86, involves the solution
of a transcendental equation.

In Sec. 11T we consider the accuracy required of the
approximations. We find that in practice it is sufficient
to use the lower inversion approximation of order 3 to-
gether with the upper inversion approximation of order
zero. For the case —a = ¢, these approximations are

0(z) = Ar + Br3, |p| <0.86, 3)
where
= (m/2) exp(c?),
B=—A%[(c>~ 1)%/6]
and

p(z) = sgn[r(z)] cosiw[r(0) — |r(z)|] exp(c?/2)},

lp| > 0.86. (4)

A rough estimate of p(z) is given by p = Ar. Some ex-
amples of errors of this approximation, including some
cases when —a # ¢, are shown in Figs. 1(a) and 1(b).

The transition level c is easily obtainable from r(0).
At z = 0, the only possible results of the product g(¥(2))
are 0 and 1; 1 occurs when |V (¢)| > ¢. Thus, r(0) is
simply

r(0) = 1 —erf(c//2). (5)

With the help of an approximation due to Hastings
(1966), c can be obtained directly from r(0); the accu-
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FIG. 1(a). The solid curve represents
the % error of the lower inversion
approximation of order 3, and the
dashed curve is the upper inver-
sion formula of order zero; the %
error is defined to be 100[(p —
Pealeulated)/p]. Curve “a” refers to the
case —a = ¢ =041, curve “b” to —a
=c¢ =051, curve “c"to —a = ¢ =
0.61, and curve *d” to —a = ¢ =
0.71.

FIG. 1(b). The solid curve represents
% error of the lower inversion ap-
proximation of order 5, and the
dashed curve the upper inversion
formula with one iteration of the
Newton-Ralphson method: the %
error is defined the same way as in
Fig. 1(a). Curve “a” refers to the case
—a=c=0.61;curve “b”to—a =¢
=0.51; curve “c” to —a = 0.60, ¢ =
0.65; and curve “d” to —a = 0.60, ¢
=0.70.
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"F1G. 2. Plot of [Ap/p(co, ao)1(T/AT) vs p(co, ag) for various values

of (co, ap) and (Aco, Aao); Ap is defined to be [p(co + Aco, ao + Apo)
— p(co, ao)]; Tis (co + |aol)/2 and AZ is (Aag + Aco)/2. Curve “a”
refers to the case —ag = co = 0.60 and Aag = Aco = —0.01; curve “b”
refers to the same as curve “a,” except that Aag = Aco = +0.01; curve
*“c’” to the case —ag = ¢p = 0.62 and Aag = Aco = —0.01; curve “d”

w0

refers to the same as curve “c,” except that Aag = Acg = +0.01; curve
*“e” to the case ag = —0.51, ¢co = 0.71, and Aag = Aco = —0.1. The
scale on the right refers to curve “e”’; the scale on the left refers to the
other curves.

racy of this approximation is better than 0.25% for 0.4
<c¢<0.38.

III. ACCURACY REQUIREMENTS

Two factors contribute to the inaccuracy in the derived
values of p(z), and thus the power spectrum. The first
is the statistical error in measuring random quantities.
For a normalized correlation function having p(0) = 1,
this error is of order V=1/2, where N is the number of
independent samples ~ Bt, where B is the full-observing
bandwidth and ¢ is the total integration time.

The second factor is the inaccuracy in the computa-
tional procedure used to relate » and p. This inaccuracy
itself arises from two contributions. The first is the in-
accuracy caused by the use of an approximation to Eq.
(2). The second is that @ and ¢ can never be perfectly
determined because they will, in general, change during
the observation, if only because the system temperature
changes as the telescope tracks the source, or the overall
system gain changes.

For most astronomical measurements the statistical
errors will be much smaller than the computational in-
accuracies. How will these errors affect the derived au-
tocorrelation function, and the power spectrum? First,
we discuss in a qualitative fashion the errors in the power
spectrum which we expect, considering only the first-
order effects. Finally, we illustrate the error arising from

higher-order effects by making numerical simula-
tions.

a) Errorsinthe Assumed Values of the Transition
Levels

The characteristics of Eq. (2) are such that the frac-
tional error in p is proportional to the fractional error in
¢, with a constant of proportionality which depends only
insensitively on the value of p. This behavior is shown in
Fig. 2 for several cases. Figure 2 shows that the fractional
errors in p and ¢ are proportional except for relatively
large values of p. In practice, such large values usually
occur in the first or second point that has nonzero delay,
which we denote by p;, with j = 1 or 2. If the assumed
value of ¢ is in error, all points of the autocorrelation
function other than points with large values are scaled
by the same incorrect factor. p(0) (hereafter referred to
as po) is defined to be unity and, hence, is not scaled at
all. Except perhaps for p; and p,, and certainly for po,
the shape of the autocorrelation function is left un-
changed. This means that the shape of the power spec-
trum is left unchanged, except for the change in shape
that results from these three points.

The power spectrum is the cosine Fourier transform
of the autocorrelation function. Thus pg adds a constant
to every point on the power spectrum and determines the
integral under the power spectrum. Since it is in fact not
po, but all the other points of the autocorrelation function
which have a scale error, the net effect on the power
spectrum is to change the scale of all of the features in
the spectrum, relative to the total integral under the
power spectrum. In short, the intensities of all spectral
features are in error. Errors in p; and p; put a low-order
cosine wave through the spectrum, as discussed in Sec.
IIb.

In the case —a # ¢, a similar error occurs. To first-
order, the fractional error in p is 0.75(—Aa/|a| +
Ac/c), and the effect on the power spectrum is similar.
Hence, for example, if Aa/|a| = Ac/c, there is no scale
error, to the first order.

b) Errors in the Inversion Approximations

Figures 1(a) and 1(b), which illustrate the errors in
the approximation Eq. (3), show that the maximum er-
rors occur near |p| = 0.86, the boundary between the
ranges of applicability of the two approximations. In
practice, p; and p; are the only points that may have such
a value. Thus, the power spectrum remains correct, ex-
cept for the contribution of the error of p; andp,. Since
the power spectrum is the cosine Fourier transform of
the autocorrelation function, this error adds a low-order
cosine wave, cos(2mjk /N), to the power spectrum. Here
N is the total number of channels of the correlator; j, as
mentioned before, is 1 or 2; and k is a channel number
in the power spectrum, kK =0, 1, ..., N — 1. The shapes
of narrow spectral features will remain unchanged.
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But the effect on real astronomical observations is
much smaller. In performing a real astronomical ob-
servation, one is interested not in the power spectrum
entering the autocorrelator input terminal, but in the
power spectrum entering the antenna. Thus, one usually
obtains “signal” and “reference” spectra on the sky, and
takes the difference. If the difference is small, the two
correlation functions are nearly identical and have nearly
identical errors; these errors cancel to the first order. In
short, errors in the difference spectrum are themselves
second-order errors, and are therefore relatively unim-
portant. To investigate second-order errors, we per-
formed numerical simulations as described in Sec.
IMlc.

¢) Numerical Simulation Studies of “Signal —
Reference” Spectra

We consider the case of a typical observation with a
signal and reference spectrum, and illustrate the effects
on the difference “signal — reference” spectrum. For the

reference spectrum we assumed a spectral shape given
by

P(f) = Thoise H(f)’
where

H(f) = () ltanh[q(f/8 — 1)]
—tanh[g(f/8 + D}}, (6)

which roughly approximates a desirable bandpass shape
in an autocorrelation receiver. Tpeise 1S the noise tem-
perature of the reference signal, (3 is the bandwidth, and
q is proportional to the slope of the high-frequency edge
of the bandpass. For the signal spectrum we assumed a
spectral shape given by the reference spectrum, plus a
Gaussian line having a height equal to the height of the
reference spectrum and a width five times smaller. The
signal and reference spectra are shown in Fig. 3. The
difference spectrum is relatively large in this case, which
should exacerbate the higher-order errors.

The digital sampling rate of the correlator affects our
results. We consider two cases. The first is sampling at
approximately the Nyquist rate, 2.203. The second is
sampling twice as fast, at 4.43. In both cases, NV, the total
number of channels, was set at 128. This more rapid
“double Nyquist sampling” is sometimes employed be-
cause it provides a slightly improved signal-to-noise ratio
(Bowers and Klinger 1974). Double Nyquist sampling
produces larger effects, because the time delay of the
point p; or p; is smaller, and the value of p, or p; cor-
respondingly larger. In the two cases, p; for the signal
spectrum was approximately 0.2 and 0.7 and j was 2 and
1, respectively.

First, we illustrate the effects that arise from errors
in the assumed values of the transition levels discussed
in Sec. I11a. We first present the case in which the as-
sumed values of the transition levels are (—0.71, 0.71)
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FIG. 3. The references spectrum is curve “b” and curve “a” is the
signal spectrum. The bandwidth of the reference is referred to as 8 in
the text; the mid-frequency and the bandwidth of the spectral line are,
respectively, 0.58 and 0.2(. g, which describes how sharp the band edge
is, has been set equal to 20.0.

when the true values are (—0.61, 0.61), corresponding
to Az = 0.1 in Fig. 2. This case produces larger errors
than the corresponding case with A¢ = —0.1. Of course,
there was an overall scale error of 1.12 in the difference
spectrum as discussed in Sec. II1a. We illustrate the
effects on the shape of the power spectrum in Fig. 4,
where we have subtracted the scaled computed differ-
ence spectrum from the true difference spectrum; the
scale factor was so chosen that the peak of the computed
difference spectrum coincided with the peak of the true

-difference spectrum.

For Nyquist sampling the change in the shape
amounts to about 0.04% of the peak of the line, which is
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F1G. 4. Plot of the difference between the true spectrum and the
computed spectrum, scaled so that the peak of the computed spectrum
equals the peak of the true spectrum; further, this difference is ex-
pressed as a percentage of the peak temperature of the true line spec-
trum. The true values of the transition level are —0.61, 0.61; the as-
sumed values are —0.71, 0.71. Curve “a” is the case with a sampling
rate of 2.2f3; curve “b” is the case with a sampling rate of 4.43. The
scale for curve “a” is the left one and that of curve *“b,” the right one.
In this figure and Figs. 5 and 6, only 64 of the 128 channels are shown;
the curves are symmetric about the mid-channel 63.

small—especially considering the fact that a value of Ac
= 0.1 is unrealistically large in practical applications.
Double Nyquist sampling increased the error by about
an order of magnitude, but the error is still negligible for
most practical applications.

In addition, we illustrate in Fig. 5 the case in which the
assumed values of the transition levels are (—0.61,0.61)
while the actual values are (—0.51, 0.71). This case, with
opposite senses of the error in assumed values of the
positive and the negative transition levels, might arise

in practice if one arbitrarily assumes that —a = c. The

results are comparable to the case of Fig. 4.

Finally, we illustrate in Fig. 6 the effects discussed in
Sec. 11 b which arise from errors in our approximation,
Eq. (3). Here we take the assumed values of the transi-
tion levels equal to the true values, (—0.61, 0.61). As
anticipated, the errors are very small, even for double
sampling. The error looks like a “baseline” error, of an
amount that is far below similar errors which are pro-
duced by a multitude of other, more important instru-
mental effects.

IV. GENERALIZATION TO CROSS CORRELATION
FUNCTIONS

Three-level correlators can be cross correlators as well
as autocorrelators. This use occurs particularly in in-
terferometry, and also in the quadrature sampling
scheme employed in a spectral-line, single-dish correlator
at the Hat Creek Radio Observatory. Cross correlation
necessitates the use of two digitizers, which may have
different transition levels, if only because the gains of the
two input signals are different. _

Let a; and ¢; be the transition levels of digitizer i,
where i = 1, 2. Again by a simple extension of the results
of Hagen and Farley (1973), one obtains

Fa(e) = ria(=) = T Flaez), @

where

F(a,cz) = (2m)~! J;pdx (1 — x2)~12

X (exp{(2acx — a2 — ¢?)/[2(1 = x2)]}) (8)
and
rij(z) = (giVi())g;(V; (1 + 2))). )
The 2, stands for summation over the combinations
(a1,¢2), (a1,a2), (azc1), and (c2,¢1), so that (7) reads
r12(z) = ria() = F(ay,az,z) + F(ay,c2,2)
+ F(a2$claz) + F(C2,C1,Z)‘ (7/)

I T
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+0.04 %} ~404% W
(@]
& z
Z o
& b L
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W a
S 22
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1 1 [
0 5 3 47 64

— CHANNEL #

F1G. 5. The same as Fig. 4 except that the assumed values are — 0.51,
0.71.
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Note that ry() simply implies the correlation of two
independent, uncorrelated signals, i.e., p;;(«) = 0.

In a system employing quadrature sampling, all the
quantities (12) to (16) can, in principle, be determined.
Since (7’) is symmetric in upper and lower transition
levels, it does not matter whether 4; > C; or vice versa.
Hence, any four of these equations can be solved to ob-
tain 4, A,, Cy, C,. However, one should never assume
that p;;(z) = 0 for any finite value of z, which makes
measurement of the levels difficult. One way to cir-
cumvent this difficulty is to measure the cross correlation
of V;(t) with a dc signal whose value exceeds c;0;. De-
noting this quantity by r;, we have

ri=A{gi®) 1)
=C — A, i=1,2. (17)

Now the quantities 41, A3, C;, C, can be easily recov-
ered from (12), (13), and (17). Using the normalized
Gaussian probability density function, one gets, for ex-

Ci = (h)[1 —erf(c1/+/2)]. (18)
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F1G. 6. Curves “a” and **b” are the same scaled differences as in Fig.
4, except that the assumed levels are —0.61, 0.61. The dashed curves
represent the differences between the computed spectrum and the true
spectrum, expressed as a percentage of the peak temperature of the
true line spectrum; however, they are unscaled. As discussed in Sec.
I111b, curve *‘c,” which refers to a sampling rate of 2.20, is a cosine
wave, as is curve “d,” which refers to a sampling rate of 4.43. The scale
on the left is for curves “a,” “*b,” and *‘¢ and that on the right is for
curve “*d.”

The inversion of Eq. (7’) is dealt with at length in
Appendix A. Section V deals with the problem of de-
termining the four transitional levels.

V. METHODS FOR DETERMINING TRANSITIONAL

LEVELS
Let
Ci=P(c;,»), i=1,2, (10)
A =pla,—=), =12, (11)

where P(a,b) is the Gaussian probability that the signal
is between levels a;0; and b;0;; then,

ri(0) = Ci + A4, (12)
r2(0) = Cy + A,, (13)
ri(e) = (Cr — A1), (14)
ra(e) = (C2 — A2)?, (15)

ria(e) = (Cy — A)(Cy — A3). (16)

Using the method outlined at the end of Sec. 11, ¢; can
be recovered from C;. In a similar fashion, the other
levels can be recovered.

APPENDIX A
In this section we develop formulas to obtain p for a
given r in two limits, viz. p — 0 and p — 1; these will be
respectively called the “lower inversion approximation”
and the “upper inversion approximation.”

First we develop the lower inversion approximation
by a simple Taylor expansion of (7’), and obtain

Flacz) = Q0" $ gpae)p™' (A1)
where }
boae) = 1/G+ D 3 fine)/C
iC = i~ ) (A2)

and

i .
g+ = kgoh(k+l)g(i—k) iCr, goy=e* (A3)

. with

1/(1 = x)V2 =3 (fip/ihxl. (A4)
i=0

The g’s are the coefficients of the series obtained by ex-
panding the expression in the curly brackets of (8) about
p = 0; for example foy = 1, f(2) = 1, fay = 9, f(6) = 225,
S+ =05 hajy = ), hjrry = —(2j+1)!6; where
a = —=(a*+ c?) and B8 = —ac, and j = 0, 1, 2,
....Using (7) and (A1) to (A4), we get
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y(z) = r(z) — r(») where

= . : 2=(1-p)/(1+p). Al5

= Z ¢(i)P'y (A5) ( p)/( ) ( )

=1 Recasting the expression in the square brackets of (A10),
where (A10) can be written as
1

Yy = (Z)’ di-nlac). (A6)  Glacz) = (27)"! f( )dx(l — x2)-12

a,c p(z

It is necessary to invert the series (A5) in order to obtain
the lower inversion formula. This can be achieved with
the help of a standard formula for inverting a series, for
example, Abramowitz and Stegun (1972, p. 16);
hence,

N .
p2) = 2 B'(2) (A7)
where
0y = 1/¥ay 0y = =y /i
0y = ¥y — Yawa) /¥y, ete. (A8)

and N is the order of approximation.

Next, we consider the upper inversion approximation.
Here we restrict our consideration to the autocorrelation
case, i.e., a» = a; and ¢, = ¢y, since, in practice, the cross
correlation is rarely near unity. Changing the lower limit
from 0 to 1 in (7’), one obtains

r(0) = r(z) = 2G(a,c,z) + G(a,a,z) + G(c,c,z),

(A9)
where
G(a,cz)=(2m)"! j;:z)dx(l - x2)~1/2
X exp{(2acx — a? = ¢?)/[2(1 — xH)]}  (A10)
and
Gaaz) = @m  dr(l =x)7
X exp[—a?/(1 + x)]. (All)

Recasting the expression in the square brackets of (A11),
(A11) can be written as

G(a,a,z) = [exp(—a?/2)/27] j;(lz)dx

X (1 — x2)~12exp(—a2t?/2), (A12)

where

2=(1=-x)/(1+x). (A13)

Expansion of the exponential in powers of 2, subsequent
integration of the terms, and retention of the first four
terms of the expansion of tan~!(¢) results in

G(a,a,z) = [exp(—a?/2)/2w][cos™1p
+ a2(—t3/3 + t3/5 = 17/7)

+ (a¥/4)(5/5 = t7/7) + (a%/24)(—17/T)], (Al4)

X exp{—ac/(1 + x) = 2N/[(1 = x)(1 + x)]}, (Al6)
where
A= (a—c)¥4 (A17)
Approximating (1 + x) by 2, (A16) becomes
1
G(acz) = (2m)"! fp(z)dx[z(l e
X exp[—(ac/2) —A/(1 —x)]. (Al18)

By transformation > = A/1 — x, (A18) reduces to

G(a,c,z) = (1/7)(N/2)'/2 exp(—ac/2)

X fexp(—=1)/tV/2 — m12[1 — erf(t'/2)]},  (A19)

where
t =N (1-p). (A20)

The error function can be evaluated by any of the nu-
merical approximations, such as that in Abramowitz and
Stegun (1972, p. 299). (A9), (A14), (A15), (A19), and
(A20) can be combined to give rise to a transcendental
equation in r(z). To solve for r(z), any standard method
such as the Newton-Raphson method can be used. If only
the first term of (A14) and none of the terms of (A19)
are retained, then (A9) can be inverted to give p(z) quite
easily; we call this approximation, (A21), the upper in-
version formula of order zero:

p(z) = cosi2[r(0) — r(z))/[exp(—a?/2)
+exp(—c2/2)]}. (A21)

In all of these equations of the upper inversion formula,
viz. (A9) to (A21), the absolute value of r(z) should be
used; the sign of p(z) naturally is the sign of r(z). Note
that (A21) is a poor approximation for the case —a = ¢
= (; this is due to our neglect of all the terms of (A19)
in (A9). We thank Dr. Jerry Hudson of the Space Sci-
ences Laboratory, University of California at Berkeley
for drawing our attention to this failure.

APPENDIX B

For the reader’s convenience, we quote below a nu-
merical approximation to the error function (Hastings
1966):

erf(x) = (2/+/) j(;w dx exp(—x2)

=1—(am+ am? + asn® + amm* + asnd)
X exp(x2) + e(x), (Bl)
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where
n=1/(1+px),p=0.3275911,
ay = 0.254829592, a; = —0.284 496 736,
a3 = 142141413741, a4 = —1.453152027,
as = 1.061405429, |e(x)| < 1.5 X 1077

APPENDIX C

We have also worked out the upper and lower inver-
sion approximations for a 1-bit (i.e., 2-level) by 3-level
correlator, a type which is used at some observatories.
The integral relation connecting r to p has been worked
out by Hagen and Farley (1973). However, the relation
given by these authors is incorrect. The correct relation
is

r=EJJ:¢xUA1—ﬂym
X expl[—c?/[2(1 = x?)]}. (C1)

By essentially identical application of the methods de-
veloped in Appendix A, the lower inversion approxi-

mation of order 3 and an upper inversion approximation
have been obtained. These are, respectively,

lp| = Alr| + B|r|3, (€2)
where
A = (m/2)exp(c?/2),
B=—[(c2+1)/6]43
and
Il = ro= (2] @0t expi-roy
— V7 [l —erf(2)], (C3)
where
t=[N1 = eI,
ro=r(0) =1 —erf(c//2). (C4)

As before, the sign of p follows that of r. The lower in-
version approximation is accurate to better than 2% for
0 < |p| <0.4 with ¢ = 0.65. The representation for  is
good for 1 < |p| <0.95 with ¢ = 0.65.

REFERENCES

Abramowitz, M., and Stegun, I. (1972). Handbook of Mathematical
Functions (Dover, New York).

Bowers, F. K., and Klinger, R. J. (1974). Astron. Astrophys. Suppl.
15, 373.

Cooper, B. F. C. (1970). Aust. J. Phys. 8, 115.

Hagen, J. B, and Farley, D. T. (1973). Radio Sci. 8, 775.
Hastings, C. (1966). Approximations for Digital Computers
(Princeton University, Princeton).

Thompson, A. R. (1973). VLA Electronics Memorandum No. 112.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980AJ.....85.1413K&amp;db_key=AST

