

The Agilent E8257D is a fully synthesized signal generator with high output power, low phase noise, and optional ramp sweep capability.

Specifications apply over a 0 to $55^{\circ} \mathrm{C}$ range, unless otherwise stated, and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at $25^{\circ} \mathrm{C}$, which may be useful in the application of the product.

Unless otherwise noted, this data sheet applies to units with serial numbers ending with 50420000 or greater.

Definitions

Specifications (spec): Represents warranted performance for instruments with a current calibration.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the expected mean or mode of all instruments at room temperature (approximately $25^{\circ} \mathrm{C}$).

Measured: Represents characteristic performance which is non-warranted. Represents the value of a parameter measured on an instrument during design verification.
Specifications 3
Frequency 3
Step (digital) sweep 4
Ramp (analog) sweep
Output 6
Spectral purity 12
Frequency modulation 21
Phase modulation 22
Amplitude modulation 24
External modulation inputs 25
Internal modulation source 25
Pulse modulation 26
Internal pulse generator 28
Simultaneous modulation 28
Remote programming 29
General specifications 30
Input/Output Descriptions 31
Front panel connectors 31
Rear panel connectors 32
Options, Accessories, and Related Products 33
Related Agilent Literature 35
Web Resources 35

Specifications

Frequency			
Range	Specified range	Tunable range	
Option 520	250 kHz to 20 GHz	100 kHz to 20	
Option $521{ }^{1}$	10 MHz to 20 GHz	10 MHz to 20	
Option 532	250 kHz to 31.8 GHz	100 kHz to 31.8	
Option 540	250 kHz to 40 GHz	100 kHz to 40	
Option 550	250 kHz to 50 GHz	100 kHz to 50	
Option 567	250 kHz to 67 GHz	100 kHz to 70	
Resolution			
CW	0.001 Hz		
All sweep modes ${ }^{2}$	0.01 Hz		
CW switching speed ${ }^{3,4,5}$	Standard	Opt UNX	Opt UNY
	< 11 ms (typ)	$<11 \mathrm{~ms}$ (typ)	< 26 ms (typ)
	$<7 \mathrm{~ms}$ (nom)	$<7 \mathrm{~ms}$ (nom)	< 22 ms (nom)
Phase offset	Adjustable in nominal 0.1° increments		
Frequency bands	Frequency range	N^{6}	
1	250 kHz to 250 MHz	1/8	
2	> 250 to 500 MHz	1/16	
3	$>500 \mathrm{MHz}$ to 1 GHz	1/8	
4	>1 to 2 GHz	1/4	
5	>2 to 3.2 GHz	1/2	
6	>3.2 to 10 GHz	1	
7	>10 to 20 GHz	2	
8	>20 to 40 GHz	4	
9	$>40 \mathrm{GHz}$	8	
Accuracy	$\pm[($ time since last adjustment x aging rate $)+$ temperature effects + line voltage effects + calibration accuracy]		
Internal timebase reference oscillator			
Aging rate ${ }^{7}$	$\begin{aligned} & < \pm 3 \times 10^{-8} / \text { year or } \\ & < \pm 2.5 \times 10^{-10} / \text { day a } \end{aligned}$		
Initial achievable calibration accuracy	$< \pm 4 \times 10^{-8}$		
Temperature effects (typ)	$< \pm 4.5 \times 10^{-9}$ from 0		
Line voltage effects (typ)	< $\pm 2 \times 10^{-10}$ for $\pm 10 \%$		

[^0]| External reference | | |
| :---: | :---: | :---: |
| Frequency | 10 MHz only | |
| Lock range | ± 1.0 ppm | |
| Reference output | | |
| Frequency | 10 MHz | |
| Amplitude | $>+4 \mathrm{dBm}$ into 50Ω load (typ) | |
| External reference input | | |
| Amplitude | $5 \mathrm{dBm} \pm 5 \mathrm{~dB}{ }^{1}$ | |
| Input impedance | 50Ω (nom) | |
| Step (digital) sweep | | |
| Operating modes | | |
| | Step sweep of frequency or amplitude or both (start to stop) | |
| | List sweep of frequency or amplitude or both (arbitrary list) | |
| Sweep range | | |
| Frequency sweep | Within instrument frequency range | |
| Amplitude sweep | Within attenuator hold range (see "Output" section) | |
| Dwell time | 1 ms to 60 s | |
| Number of points | | |
| Step sweep | 2 to 65535 | |
| List sweep | 2 to 1601 per table | |
| Triggering | Auto, external, single, or GPIB | |
| Settling time | Standard Opt UNX | Opt UNY |
| Frequency ${ }^{2}$ | $<9 \mathrm{~ms}$ (typ) $<9 \mathrm{~ms}$ (typ) | < 24 ms (typ) |
| Amplitude | $<5 \mathrm{~ms}$ (typ) $<5 \mathrm{~ms}$ (typ) | < 5 ms (typ) |

[^1]
Ramp (analog) sweep (Option 007)

Operating modes			
	- Synthesized frequency sweep (start/stop), (center/span), (swept CW) - Power (amplitude) sweep (start/stop) - Manual sweep - RPG control between start and stop frequencies - Alternate sweep - Alternates successive sweeps between current and stored states		
Sweep span range	Settable from minimum ${ }^{2}$ to full range		
Maximum sweep rate	Start frequency	Maximum sweep rate	Max span for 100 ms sweep
	250 kHz to < 0.5 GHz	$25 \mathrm{MHz} / \mathrm{ms}$	2.5 GHz
	0.5 to $<1 \mathrm{GHz}$	$50 \mathrm{MHz} / \mathrm{ms}$	5 GHz
	1 to <2 GHz	$100 \mathrm{MHz} / \mathrm{ms}$	10 GHz
	2 to <3.2 GHz	$200 \mathrm{MHz} / \mathrm{ms}$	20 GHz
	$\geq 3.2 \mathrm{GHz}$	$400 \mathrm{MHz} / \mathrm{ms}$	40 GHz
Frequency accuracy	$\pm 0.05 \%$ of span \pm timebase (at 100 ms sweep time, for sweep spans less than maximum values given above) Accuracy improves proportionally as sweep time increases ${ }^{3}$		
Sweep time (forward sweep, not including bandswitch and retrace intervals)			
Manual mode	Settable 10 ms to 200 seconds		
Resolution	1 ms		
Auto mode	Set to minimum value determined by maximum sweep rate and 8757D setting		
Triggering	Auto, external, single, or GPIB		
Markers	10 independent continuously variable frequency markers		
Display	Z-axis intensity or RF amplitude pulse		
Functions	M1 to center, M1/M2 to start/stop, marker delta		
Two-tone (master/slave) measurements ${ }^{4}$	Two PSGs can synchronously track each other, with independent control of start/stop frequencies		
Network analyzer compatibility	Compatible with Agilent 8757D scalar network analyzer. Also useable with Agilent 8757A/C/E scalar network analyzers for making basic swept measurements. ${ }^{5}$		

1. During ramp sweep operation, $A M, F M$, phase modulation, and pulse modulation are useable but performance is not guaranteed.
2. Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than $[0.00004 \%$ of carrier frequency or 140 Hz$] \times$ [sweep time in seconds]. Actual span will always be displayed correctly.
3. Typical accuracy for sweep times $>100 \mathrm{~ms}$ can be calculated from the equation: [(0.005\% of span)/(sweep time in seconds)] \pm timebase. Accuracy is not specified for sweep times < 100 ms.
4. For master/slave operation use Agilent part number 8120-8806 master/slave interface cable.
5. GPIB system interface is not supported with 8757A/C/E, only with 8757D. As a result, some features of $8757 \mathrm{~A} / \mathrm{C} / E$, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.

Output

Minimum settable output power

Standard $\quad-20 \mathrm{dBm}$

With Option 1E1 step attenuator	
Options 520,521,532, and 540	-135 dBm
Options 550 and 567	-110 dBm
Maximum output power (dBm) ${ }^{\mathbf{1}}$	
Spec (Typ)	

| Frequency range ${ }^{2}$ | Standard | Option 1EU | Option 1E1 |
| :--- | :--- | :--- | :--- |\quad Options 1E1 + 1EU

Low phase noise mode on				
10 to 250 MHz (filters on)	+11	$+11(+13)$	$+16(+17)$	+15
1 to 250 MHz (filters off)		$+11(+13)$		
Low phase noise mode off	+15			$+16(+17)$
10 to 250 MHz (filters on)		$+15(+17)$	+15	+15
>0.25 to 2 GHz (filters on)	+15	$+16(+17)$	+14	$+16(+17)$
250 kHz to 10 MHz	+14	$+14(+17)$	$+16(+19)$	+15
>10 to $<60 \mathrm{MHz}$	+15	$+20(+21)$	+15	$+16(+19)$
60 to 400 MHz	+15	$+21(+23)$	+14	$+20(+21)$
>0.4 to 3.2 GHz 4	+15	$+21(+23)$	+14	$+21(+23)$
3.2 to 10 GHz	+15	+15	$+21(+22)$	
10 to 20 GHz		$+19(+21)$		

Option $521{ }^{5}$

Low phase noise mode on				
10 to 250 MHz (filters on)	$+11(+13)$	n / a	$+11(+13)$	n / a
10 to 250 MHz (filters off)				
Low phase noise mode off	$+16(+17)$	n / a	$+16(+17)$	n / a
10 to 250 MHz (filters on)				
>0.25 to 2 GHz (filters on)	$+16(+18)$	n / a	$+16(+18)$	n / a
10 to 250 MHz	$+18(+20)$	n / a	$+18(+20)$	n / a
>0.25 to 1 GHz	$+19(+21)$	n / a	$+19(+21)$	n / a
>1 to 6 GHz 4	$+24(+26)$	n / a	$+24(+26)$	n / a
>6 to 14 GHz	$+28(+30)$	n / a	$+28(+30)$	n / a
>14 to 17.5 GHz	$+28(+30)$	n / a	$+27(+28)$	n / a
>17.5 to 20 GHz	$+26(+28)$	n / a	$+25(+27)$	n / a

[^2]
Option 532 and 540

Low phase noise mode on				
10 to 250 MHz (filters on)	+10	+10 (+12)	+10	+10 (+12)
1 to 250 MHz (filters off) ${ }^{1}$	+11	+15 (+16)	+11	+15 (+16)
Low phase noise mode off				
10 to 250 MHz (filters on)	+11	+14 (+16)	+11	+14 (+16)
>0.25 to 2 GHz (filters on)	+11	+15 (+16)	+11	+15 (+16)
250 kHz to 10 MHz	+11	+13 (+16)	+11	+13 (+16)
>10 to $<60 \mathrm{MHz}$	+11	+15 (+18)	+11	+15 (+18)
60 to 400 MHz	+11	+19 (+21)	+11	+19 (+21)
>0.4 to $3.2 \mathrm{GHz}{ }^{2}$	+11	+20 (+22)	+11	+20 (+22)
> 3.2 to 17 GHz	+11	+19 (+21)	+10	+17 (+20)
>17 to 37 GHz	+11	+16 (+19)	+9	+14 (+17)
>37 to 40 GHz	+11	+14 (+17)	+9	+12 (+16)

Option 550 and 567
Low phase noise mode on

10 to 250 MHz (filters on)	+5	+9 (+11)	+5	+9 (+11)
1 to 250 MHz (filters off) ${ }^{1}$	+5	+14 (+16)	+5	+14 (+16)
Low phase noise mode off				
10 to 250 MHz (filters on)	+5	+13 (+15)	+5	+13 (+15)
>0.25 to 2 GHz (filters on)	+5	+14 (+15)	+5	+14 (+15)
250 kHz to 10 MHz	+5	+12 (+15)	+5	+12 (+15)
>10 to $<60 \mathrm{MHz}$	+5	+14 (+17)	+5	+14 (+17)
60 to 400 MHz	+5	+18 (+20)	+5	+18 (+20)
>0.4 to $3.2 \mathrm{GHz}^{2}$	+5	+19 (+21)	+5	+19 (+21)
> 3.2 to 15 GHz	+5	+18 (+21)	+4	+17 (+20)
>15 to 30 GHz	+5	+14 (+16)	+3	+13 (+15)
>30 to 65 GHz	+5	+11 (+14)	+3	+9 (+12)
>65 to 67 GHz	+5	+10 (+14)	+3	+8(+12)
>67 to 70 GHz	(+5)	(+8)	(+3)	(+6)

1. In this mode, harmonics are large and output power refers to the total power including harmonics.
2. With Option 1EH low-pass filters below 2 GHz switched off. With filters on, this specification applies above 2 GHz .

Maximum output power (measured)

Step attenuator (Option 1E1) $\mathbf{1}^{1}$	
Options 520,521,532, and 540	0 dB and 5 dB to 115 dB in 10 dB steps
With Optimize S / N on ${ }^{2}$	0 dB to 115 dB in 5 dB steps
Options 550 and 567	0 dB to 90 dB in 10 dB steps
Attenuator hold range	From -20 dBm to maximum specified output power with step attenuator in 0 dB position. Can be offset using Option 1 E 1 attenuator.
Minimum	

1. The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (automatic level control) within the attenuator hold range.
2. With attenuator in auto mode. Optimize S / N mode provides improved signal/noise performance and is included with Option 521 and Option 1EU models. Specs in the following sections (such as level accuracy, spectral purity, modulation, etc) are only tested with Optimize S/N mode turned off.

Amplitude switching speed							
ALC on	$<6 \mathrm{~ms}(\text { typ })^{1}$						
ALC off	$<10 \mathrm{~ms}$ (typ) (not including power search) ${ }^{2}$						
Level accuracy ${ }^{3}$ (dB)	> 20 dBm	20 to > 16	$\mathrm{dBm} \quad 16$ to $>$	$10 \mathrm{dBm} \quad 10$	0 $>0 \mathrm{dBm}$	0 to -10 dBm	<-10 to -20 dBm
Options 520, 532, 540, 550, 567							
250 kHz to $2 \mathrm{GHz} 4,5$	± 0.8	$\pm 0.8{ }^{6}$	± 0.6	± 0.6		± 0.6	± 1.2
>2 to 20 GHz	± 1.0	± 0.8	± 0.8	± 0.8		± 0.8	± 1.2
>20 to 40 GHz		± 1.0	± 1.0	± 0.9		± 0.9	± 1.3
>40 to 50 GHz				± 1.3		± 0.9	± 1.2
>50 to 67 GHz				± 1.5		± 1.0	$\pm 1.2 \text { (typ) }$
Option 521							
10 to $<500 \mathrm{MHz} 4,7$	± 1.9 (typ)	± 1.2 (typ)	± 1.2 (typ) \pm		± 1.1 (typ)	± 1.2 (typ)	$\pm 1.2 \text { (typ) }$
0.5 to 20 GHz	$\pm 1.0{ }^{8}$	± 0.8	± 0.8	± 0.8		± 0.9	$\pm 1.1^{9}$
Level accuracy with step attenuator (0ption 1E1) ${ }^{10}(\mathrm{~dB})$							
	26 to > 20 dBm	20 to $>16 \mathrm{dBm}$	16 to $>10 \mathrm{dBm}$	10 to $>0 \mathrm{dBm}$	0 to - 10 dBm	<-10 to -70 dBm	$<-70 \text { to }-90 \mathrm{dBm}$
Options 520, 532, 540, 550, 567							
250 kHz to $2 \mathrm{GHz} 4,5$	± 1.0	$\pm 0.8{ }^{6}$	± 0.6	± 0.6	± 0.6	± 0.7	± 0.8
>2 to 20 GHz	± 1.0	± 0.8	± 0.8	± 0.8	± 0.8	± 0.9	± 1.0
>20 to 40 GHz	---	± 1.0	± 1.0	± 0.9	± 0.9	± 1.0	± 2.0
>40 to 50 GHz	---	---	---	± 1.3	± 0.9	± 1.5	± 2.5
>50 to 67 GHz	---	---	---	± 1.5	± 1.0	± 1.5 (typ)	± 2.5 (typ)
Option 521							
10 to $<500 \mathrm{MHz}{ }^{4,11}$		± 1.3	± 0.8	± 0.8	± 0.7	± 1.0	± 1.0
0.5 to 20 GHz	$\pm 1.0{ }^{8}$	± 0.8	± 0.8	± 0.8	± 0.8	± 1.1	± 1.1

1. To within 0.1 dB of final amplitude within one attenuator range. Does not apply to Option 521 below 500 MHz .
2. To within 0.5 dB of final amplitude within one attenuator range. Also applies to Option 521 below 500 MHz with ALC on. Add up to 50 ms when using power search.
3. Specifications apply in CW and list/step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range with the ALC on. Degradation outside this temperature range, for power levels >-10 dBm is typically $<0.3 \mathrm{~dB}$ (except $<0.5 \mathrm{~dB}$ from 2 to 3.2 GHz and with Option 521 below 500 MHz). In ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz .
4. When Option UNX or UNY Iow phase noise mode is on, specifications below 250 MHz apply only when Option 1EH low-pass filters below 2 GHz are on. With Option 1EH low-pass filters below 2 GHz off, accuracy is typically $\pm 2 \mathrm{~dB}$.
5. For Option 550 and 567, degrade level accuracy by 0.2 dB from 1.7 to 2 GHz when step attenuator is set to 0 dB or when Option $1 E 1$ is not present.
6. Nominal above +16 dBm from 10 MHz to 60 MHz .
7. With Option 521, specifications below 500 MHz are typical, and apply for a 50Ω load with VSWR less than 1.4:1.
8. Typical above +26 dBm .
9. Typical below -15 dBm .
10. Specifications apply in CW and list/step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range, with the $A L C$ on and attenuator hold off (normal operating mode). Degradation outside this temperature range, with attenuator hold on and ALC power levels $>-10 \mathrm{dBm}$, is typically $<.3 \mathrm{~dB}$ (except $<0.5 \mathrm{~dB}$ from 2 to 3.2 GHz and with Option 521 below 500 MHz). In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications apply to 18 GHz only. From 18 to 20 GHz , typical level accuracy degrades by 0.2 dB . Specifications do not apply above the maximum specified power.
11. With Option 521 , specifications below 500 MHz apply with step attenuator set to 5 dB or higher (requiring Attenuator Hold 0 N above 8 dBm). With step attenuator set to 0 dB , refer to level accuracy specifications without Option 1E1.

Level accuracy (measured)

Resolution	0.01 dB
Temperature stability	$0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) ${ }^{1}$
User flatness correction	2 to 1601 points/table
Number of points	Up to 10,000, memory limited
Number of tables	Arbitrary, within attenuator range
Path loss	Remote power meter ${ }^{2}$, remote bus, manual (user edit/view)
Entry modes	50Ω (nom)
Output impedance	
SWR (internally leveled)	$<1.4: 1$ (typ) ${ }^{3}$
$\mathbf{O p t i o n s} 520,532,540,550,567$	$<1.6: 1$ (typ)
250 kHz to 2 GHz	$<1.8: 1$ (typ)
$>2 \mathrm{GHz}$ to 20 GHz	$<2.0: 1$ (typ)
$>20 \mathrm{GHz}$ to 40 GHz	
$>40 \mathrm{GHz}$ to 67 GHz	

[^3]
Option 521

10 to < 500 MHz	< 6:1 (typ) without Option 1E1, or step attenuator set to 0 dB
	<1.6:1 (typ) with Option 1E1 step attenuator set $\geq 5 \mathrm{~dB}$
0.5 to 20 GHz	< 1.8:1 (typ)
Leveling modes	Internal leveling, external detector leveling, millimeter source module, ALC off
External detector leveling	
Range	-0.2 mV to -0.5 V (nom) (-36 dBm to +4 dBm using Agilent 33330D/E detector)
Bandwidth	Selectable 0.1 to 100 kHz (nom) (Note: not intended for pulsed operation)
Maximum reverse power	1/2 Watt, $0 V_{D C}{ }^{1}$
Adjustable RF output limit	
Function	Protects external devices by limiting maximum RF output. Operates in all leveling modes (internal, external, source module)
Range	User-adjustable from +15 dBm to maximum output power
Accuracy	
+15 to +25 dBm	$\pm 1 \mathrm{~dB}$ (typ)
$>+25 \mathrm{dBm}$	$\pm 1.5 \mathrm{~dB}$ (typ)
Resolution	1 dB
Response time	$30 \mu \mathrm{sec}$ (measured)
Adjustment	Can be locked to prevent accidental change

RF output limit (measured)

1. For Option 521, maximum reverse power is $1 / 2$ watt when Option $1 E 1$ step attenuator is set at or above 5 dB . When Option $1 E 1$ step attenuator $=0 \mathrm{~dB}$, or for units without Option 1E1, maximum reverse power is 2 watts above $250 \mathrm{MHz}, 1 / 2$ watt below 250 MHz .

Spectral purity

Harmonics ${ }^{1}$ (dBc at +10 dBm or maximum specified output power, whichever is lower)

Frequency	Options 520, 532, 540, 550, 567	Option 521
$<1 \mathrm{MHz}$	-25 dBc (typ)	
1 to $<10 \mathrm{MHz}$	$-25 \mathrm{dBc}$	
10 to <60 MHz	$-28 \mathrm{dBc}$	$-25 \mathrm{dBc}$
10 to $<60 \mathrm{MHz}$ with Option 1EH filters on	$-45 \mathrm{dBc}{ }^{2}$	$-35 \mathrm{dBc}{ }^{2,3}$
0.06 to 2 GHz	$-30 \mathrm{dBc}$	$-25 \mathrm{dBc}$
0.06 to 2 GHz with Option 1EH filters on	$-55 \mathrm{dBc}{ }^{2}$	$-35 \mathrm{dBc}{ }^{2,3}$
>2 to 20 GHz	$-55 \mathrm{dBc}$	$-35 \mathrm{dBc}$
>20 to 67 GHz	-50 dBc (typ)	
10 to $\mathbf{2 5 0} \mathbf{M H z}$, Option UNX or UNY low phase noise mode		
With Option 1EH filters off	-8 dBc (typ)	-8 dBc (typ)
With Option 1EH filters on	$-55 \mathrm{dBc}{ }^{4}$	$-35 \mathrm{dBc}$

[^4]

Harmonics (measured)

Sub-harmonics ${ }^{1}(\mathrm{dBc}$ at +10 dBm or maximum specified output power, whichever is lower)

250 kHz to 10 GHz	None
$>10 \mathrm{GHz}$ to 20 GHz	$<-60 \mathrm{dBc}$
$>20 \mathrm{GHz}$	$<-50 \mathrm{dBc}$

Non-harmonics ${ }^{2,3}(\mathrm{dBc}$ at +10 dBm or maximum specified output power, whichever is lower)

Frequency	Offsets > $\mathbf{3} \mathbf{~ k H z}$ (standard) Spec (typ)	Offsets > 300 Hz (Opt UNX or UNY) Spec (typ)	Offsets > $\mathbf{3} \mathbf{~ k H z}$ (Option UNY) Spec (typ)	Line-related ($\leq \mathbf{3 0 0 H z}$) (typ)
250 kHz to 250 MHz	-58 (-62 ${ }^{4}$)	-58 (-62 ${ }^{4}$)	-58	(-55)
1 to $250 \mathrm{MHz}{ }^{5}$	-80 (-88)	-80 (-88)	-80	(-55)
> 250 MHz to 1 GHz	-80 (-88)	-80 (-88)	-80	(-55)
>1 to 2 GHz	-74 (-82)	-74 (-82)	-80	(-55)
>2 to 3.2 GHz	-68 (-76)	-68 (-76)	-80	(-55)
>3.2 to 10 GHz	-62 (-70)	-62 (-70)	-70	(-50)
>10 to 20 GHz	-56 (-64)	-56 (-64)	-64	(-45)
>20 to 40 GHz	-50 (-58)	-50 (-58)	-58	(-39)
$>40 \mathrm{GHz}$	-44 (-52)	-44 (-52)	-52	(-37)
Residual FM (RMS, $\mathbf{5 0 ~ H z ~ t o ~} \mathbf{1 5 ~ k H z}$ bandwidth)				
CW mode	< $\mathrm{N} \times 6 \mathrm{~Hz}$ (typ)			
CW mode with Option UNX or UNY	$<\mathrm{N} \times 4 \mathrm{~Hz}$ (typ)			
Ramp sweep mode	< N x 1 kHz (typ)			

Broadband noise (CW mode at +10 dBm or maximum specified output power, whichever is lower, for offsets $>\mathbf{1 0} \mathbf{~ M H z}$)	
$\mathbf{1 0 ~ M H z ~ t o ~} 20 \mathrm{GHz}$ (without Option 521)	$<-148 \mathrm{dBc} / \mathrm{Hz}$ (typ)
10 MHz to 20 GHz (Option 521)	$<-142 \mathrm{dBc} / \mathrm{Hz}$ (typ)
>20 to 40 GHz	$<-141 \mathrm{dBc} / \mathrm{Hz}$ (typ)
$>40 \mathrm{GHz}$	$<-135 \mathrm{dBc} / \mathrm{Hz}$ (typ)

[^5]| Measured RMS jitter ${ }^{1}$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Standard carrier frequency | SONET/SDH data rates | RMS jitter bandwidth | Unit intervals ($\mu \mathrm{UI}$) | Time (fs) |
| 155 MHz | $155 \mathrm{MB} / \mathrm{s}$ | 100 Hz to 1.5 MHz | 30 | 190 |
| 622 MHz | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 27 | 43 |
| 2.488 GHz | 2488 MB/s | 5 kHz to 20 MHz | 84 | 34 |
| 9.953 GHz | $9953 \mathrm{MB} / \mathrm{s}$ | 10 kHz to 80 MHz | 222 | 22 |
| 39.812 GHz | 39812 MB/s | 40 kHz to 320 MHz | 804 | 21 |
| Option UNX carrier frequency | SONET/SDH data rates | RMS jitter bandwidth | Unit intervals ($\mu \mathrm{UI}$) | Time (fs) |
| 155 MHz | $155 \mathrm{MB} / \mathrm{s}$ | 100 Hz to 1.5 MHz | 7 | 47 |
| 622 MHz | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 27 | 43 |
| 2.488 GHz | 2488 MB/s | 5 kHz to 20 MHz | 86 | 35 |
| 9.953 GHz | 9953 MB/s | 10 kHz to 80 MHz | 197 | 20 |
| 39.812 GHz | $39812 \mathrm{MB} / \mathrm{s}$ | 40 kHz to 320 MHz | 817 | 21 |
| Option UNY carrier frequency | SONET/SDH data rates | RMS jitter bandwidth | Unit intervals ($\mu \mathrm{UI}$) | Time (fs) |
| 155 MHz | $155 \mathrm{MB} / \mathrm{s}$ | 100 Hz to 1.5 MHz | 6 | 36 |
| 622 MHz | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 21 | 34 |
| 2.488 GHz | 2488 MB/s | 5 kHz to 20 MHz | 53 | 21 |
| 9.953 GHz | 9953 MB/s | 10 kHz to 80 MHz | 97 | 10 |
| 39.812 GHz | 39812 MB/s | 40 kHz to 320 MHz | 415 | 10 |

[^6]| SSB phase noise (dB | z) (CW) ${ }^{1,2}$ | | 20 kHz offset from carrier | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | | | Spec | Typical | | |
| 250 kHz to 250 MHz | | | -130 | -134 | | |
| > 250 to 500 MHz | | | -134 | -138 | | |
| $>500 \mathrm{MHz}$ to 1 GHz | | | -130 | -134 | | |
| >1 to 2 GHz | | | -124 | -128 | | |
| >2 to 3.2 GHz | | | -120 | -124 | | |
| >3.2 to 10 GHz | | | -110 | -113 | | |
| >10 to 20 GHz | | | -104 | -108 | | |
| >20 to 40 GHz | | | -98 | -102 | | |
| >40 to 67 GHz | | | -92 | -96 | | |
| Option UNX: absolute SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$ | | | Offset from carrier | | | |
| Frequency | $\begin{gathered} 1 \mathrm{~Hz} \\ \operatorname{spec}(\mathrm{typ}) \end{gathered}$ | $\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ |
| 250 kHz to 250 MHz | -58 (-66) | -87 (-94) | -104 (-120) | -121 (-128) | -128 (-132) | -130 (-133) |
| > 250 to 500 MHz | -61 (-72) | -88 (-98) | -108 (-118) | -125 (-132) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to 1 GHz | -57 (-65) | -84 (-93) | -101 (-111) | -121 (-130) | -130 (-134) | -130 (-135) |
| >1 to 2 GHz | -51 (-58) | -79 (-86) | -96 (-106) | -115 (-124) | -124 (-129) | -124 (-129) |
| >2 to 3.2 GHz | -46 (-54) | -74 (-82) | -92 (-102) | -111 (-120) | -120 (-124) | -120 (-124) |
| >3.2 to 10 GHz | -37 (-44) | -65 (-72) | -81 (-92) | -101 (-109) | -110 (-114) | -110 (-115) |
| >10 to 20 GHz | -31 (-38) | -59 (-66) | -75 (-87) | -95 (-106) | -104 (-107) | -104 (-109) |
| >20 to 40 GHz | -25 (-32) | -53 (-60) | -69 (-79) | -89 (-99) | -98 (-101) | -98 (-103) |
| >40 to 67 GHz | -20 (-26) | -47 (-56) | -64 (-73) | -84 (-90) | -92 (-95) | -92 (-97) |
| Option UNY: absolute SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$ | | | Offset from carrier, optimized for less than 150 kHz (mode 1) | | | |
| Frequency | $\begin{gathered} 1 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 1 \text { kHz } \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ |
| 250 kHz to 250 MHz | -64 (-70) | -92 (-98) | -115 (-125) | -123 (-135) | -138 (-144) | -141 (-144) |
| >250 to 500 MHz | -67 (-77) | -93 (-101) | -111 (-116) | -125 (-132) | -138 (-144) | -142 (-147) |
| $>500 \mathrm{MHz}$ to 1 GHz | -62 (-69) | -91 (-99) | -105 (-111) | -121 (-128) | -138 (-143) | -138 (-144) |
| >1 to 2 GHz | -57 (-63) | -86 (-90) | -100 (-106) | -115 (-121) | -133 (-138) | -133 (-139) |
| >2 to 3.2 GHz | -52 (-58) | -81 (-84) | -96 (-102) | -111 (-117) | -128 (-134) | -128 (-134) |
| >3.2 to 10 GHz | -43 (-49) | -72 (-76) | -85 (-91) | $-101(-107)$ | -120 (-126) | -120 (-125) |
| >10 to 20 GHz | -37 (-43) | -66 (-70) | -79 (-85) | -95 (-101) | $-114(-121)$ | -114 (-119) |
| >20 to 40 GHz | -31 (-37) | -60 (-66) | -73 (-79) | -89 (-95) | -108 (-113) | -108 (-113) |
| >40 to 67 GHz | -26 (-32) | -54 (-60) | -68 (-73) | -84 (-90) | -102 (-107) | -102 (-107) |

[^7]| Option UNX: residual SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$ | | | Offset from carrier | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | $\begin{gathered} 1 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ |
| 250 kHz to 250 MHz | (-94) | -100 (-107) | -110 (-118) | -120 (-126) | -128 (-132) | -130 (-133) |
| > 250 to 500 MHz | (-101) | -105 (-112) | -115 (-122) | -124 (-131) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to 1 GHz | (-94) | -100 (-107) | -110 (-118) | -120 (-126) | -130 (-134) | -130 (-134) |
| >1 to 2 GHz | (-89) | -96 (-101) | -104 (-112) | -114 (-120) | -124 (-129) | -124 (-129) |
| >2 to 3.2 GHz | (-85) | -92 (-97) | -100 (-108) | -110 (-116) | -120 (-124) | -120 (-124) |
| >3.2 to 10 GHz | (-74) | (-87) | (-98) | (-106) | (-114) | (-115) |
| Option UNY: residual SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$ | | | Offset from carrier, optimized for less than 150 kHz (mode 1) | | | |
| Frequency | $\begin{gathered} 1 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ |
| 250 kHz to 250 MHz | (-94) | -100(-107) | -110 (-118) | -123 (-135) | -138 (-144) | -141 (-144) |
| > 250 to 500 MHz | (-101) | -105 (-112) | -115 (-122) | -124 (-130) | -138(-144) | -140 (-147) |
| $>500 \mathrm{MHz}$ to 1 GHz | (-94) | -100 (-108) | -110 (-118) | -120 (-126) | -135 (-142) | -135 (-145) |
| >1 to 2 GHz | (-89) | -96 (-101) | -104 (-112) | -115 (-121) | -133 (-138) | -133 (-139) |
| >2 to 3.2 GHz | (-85) | -92 (-97) | -100 (-108) | -111 (-117) | -128(-134) | -128 (-134) |
| >3.2 to 10 GHz | (-74) | (-87) | (-98) | (-104) | (-126) | (-125) |

Option UNX: absolute SSB phase noise ($\mathrm{dBc} / \mathrm{Hz}$) (CW)

Low phase noise mode (1 to $\mathbf{2 5 0} \mathbf{M H z}$) 1, 3			Offset from carrier			
Frequency	$\begin{gathered} 1 \mathrm{~Hz} \\ \operatorname{spec}(\mathrm{typ}) \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$
1 MHz	(-109)	(-120)	(-130)	(-143)	(-150)	(-150)
10 MHz	-90 (-95)	-125 (-130)	-130 (-135)	-143 (-148)	-155 (-158)	-155 (-158)
10 MHz (Option 521)	(-95)	(-115)	(-125)	(-138)	(-145)	(-145)
100 MHz	-70 (-75)	-97 (-102)	-119 (-124)	-130 (-135)	-140 (-145)	-140 (-145)
250 MHz	(-76)	(-104)	(-121)	(-138)	(-142)	(-142)

Option UNY: absolute SSB phase noise ($\mathrm{dBc} / \mathrm{Hz}$) (CW)

Low phase noise mode (1 to $\mathbf{2 5 0} \mathbf{M H z}$) ${ }^{\mathbf{1}, 3}$			Offset from carrier, optimized for less than 150 kHz (mode 1)			
Frequency	$\begin{gathered} 1 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$	$\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$
1 MHz	-116 (-129)	-140 (-151)	-153 (-161)	-160 (-166)	-160 (-167)	-160 (-165)
10 MHz	-96 (-111)	-126 (-133)	-140 (-150)	-155 (-162)	-155 (-165)	-155 (-165)
10 MHz (Option 521)	(-100)	(-120)	(-135)	(-145)	(-150)	(-150)
100 MHz	-80 (-96)	-105 (-120)	-120 (-130)	-138 (-146)	-150 (-157)	-150 (-157)
100 MHz (Option 521)	-80 (-92)	-105 (-110)	-120 (-125)	-138 (-145)	-150 (-152)	-150 (-152)
250 MHz	-68 (-77)	-100 (-108)	-114 (-122)	-133 (-139)	-144 (-153)	-144 (-154)
250 MHz (Option 521	-68(-77)	-100 (-105)	-114 (-118)	-133 (-139)	-144 (-152)	-144 (-152)

[^8]

Measured phase noise (data collected with the E5500 and plotted without spurs)

Measured phase noise (data collected with the E5500 and plotted without spurs);
Option UNY phase noise optimized for offsets less than 150 kHz (mode 1)

[^9]

[^10]| Distortion $\quad<1 \%(1 \mathrm{kHz}$ rate, deviations $<\mathrm{N} \times 800 \mathrm{kHz})$ | | | |
| :---: | :---: | :---: | :---: |
| Sensitivity $\quad \pm 1 \mathrm{~V}_{\text {pea }}$ | $\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated deviation | | |
| FM1 an
 Paths modula
 FM2 pa
 combin | FM1 and FM2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2. The FM2 path is limited to a maximum rate of 1 MHz . The FM2 path must be set to a deviation less than FM1. To avoid distortion and clipping, signals applied with any combination of FM1, FM2, or FM1+FM2 should not exceed $1 \mathrm{~V}_{\text {peak. }}$. | | |
| Phase modulation ${ }^{1}$ (Option | (Option UNT) | | |
| Maximum deviation ${ }^{2}$ | | | |
| Standard or Option UNX default RF path | Frequency | 100 kHz BW mode | 1 MHz BW mode |
| | 250 kHz to 250 MHz | 20 rad | 2 rad |
| | > 250 to 500 MHz | 10 rad | 1 rad |
| | > 500 MHz to 1 GHz | 20 rad | 2 rad |
| | $>1 \mathrm{GHz}$ to 2 GHz | 40 rad | 4 rad |
| | $>2 \mathrm{GHz}$ to 3.2 GHz | 80 rad | 8 rad |
| | $>3.2 \mathrm{GHz}$ to 10 GHz | 160 rad | 16 rad |
| | $>10 \mathrm{GHz}$ to 20 GHz | 320 rad | 32 rad |
| | $>20 \mathrm{GHz}$ to 40 GHz | 640 rad | 64 rad |
| | $>40 \mathrm{GHz}$ to 67 GHz | 1280 rad | 128 rad |
| Option UNY default RF path | Frequency | 1 MHz BW mode | 10 MHz BW mode |
| | 250 kHz to 250 MHz | 2 rad | 0.2 rad |
| | > 250 to 500 MHz | 1 rad | 0.1 rad |
| | $>500 \mathrm{MHz}$ to 1 GHz | 2 rad | 0.2 rad |
| | $>1 \mathrm{GHz}$ to 2 GHz | 4 rad | 0.4 rad |
| | $>2 \mathrm{GHz}$ to 3.2 GHz | 8 rad | 0.8 rad |
| | $>3.2 \mathrm{GHz}$ to 10 GHz | 16 rad | 1.6 rad |
| | $>10 \mathrm{GHz}$ to 20 GHz | 32 rad | 3.2 rad |
| | $>20 \mathrm{GHz}$ to 40 GHz | 64 rad | 6.4 rad |
| | $>40 \mathrm{GHz}$ to 67 GHz | 128 rad | 12.8 rad |
| Option UNX low phase noise mode | Frequency | 100 kHz BW mode | 1 MHz BW mode |
| | > 0.98 to 1.953 MHz | 0.03906 rad | 0.003906 rad |
| | > 1.953 to 3.906 MHz | 0.078125 rad | 0.0078125 rad |
| | > 3.906 to 7.813 MHz | 0.15625 rad | 0.015625 rad |
| | >7.813 to 15.63 MHz | 0.3125 rad | 0.03125 rad |
| | > 15.63 to 31.25 MHz | 0.625 rad | 0.0625 rad |
| | > 31.25 to 62.5 MHz | 1.25 rad | 0.125 rad |
| | > 62.5 to 125 MHz | 2.5 rad | 0.25 rad |
| | > 125 to 250 MHz | 5 rad | 0.5 rad |

[^11]| Option UNY low phase noise mode | Frequency | 1 MHz BW mode | 10 MHz BW mode | |
| :---: | :---: | :---: | :---: | :---: |
| | >0.98 to 1.953 MHz | 0.003906 rad | 0.0003906 rad | |
| | > 1.953 to 3.906 MHz | 0.0078125 rad | 0.00078125 rad | |
| | > 3.906 to 7.813 MHz | 0.015625 rad | 0.0015625 rad | |
| | >7.813 to 15.63 MHz | 0.03125 rad | 0.003125 rad | |
| | > 15.63 to 31.25 MHz | 0.0625 rad | 0.00625 rad | |
| | > 31.25 to 62.5 MHz | 0.125 rad | 0.0125 rad | |
| | > 62.5 to 125 MHz | 0.25 rad | 0.025 rad | |
| | > 125 to 250 MHz | 0.5 rad | 0.05 rad | |
| Resolution | 0.1\% of set deviation | | | |
| Deviation accuracy | $< \pm 5 \%$ of deviation +0.01 radians (1 kHz rate with 1 MHz BW mode for Option UNY or 100 kHz BW mode otherwise) | | | |
| Modulation frequency response ${ }^{1}$ | Rates (3 dB bandwidth) | Standard | UNX | UNY |
| 100 kHz BW mode | DC to 100 kHz | Normal | Normal | n/a |
| 1 MHz BW mode | DC to 1 MHz (typ) ${ }^{2}$ | High | High | Normal |
| 10 MHz BW mode | DC to 10 MHz (typ) | n / a | n / a | High |
| Distortion | | | | |
| Standard or Option UNX | $<1 \%$ (1 kHz rate, total harmonic distortion (THD), deviation < N x $80 \mathrm{rad}, 100 \mathrm{kHz}$ BW mode) | | | |
| Option UNY | $<1 \%$ (1 kHz rate, total harmonic distortion (THD), deviation $<\mathrm{N} \times 8 \mathrm{rad}, 1 \mathrm{MHz}$ BW mode) | | | |
| Sensitivity | $\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated deviation | | | |
| Paths | $Ф \mathrm{M} 1$ and $Ф \mathrm{M} 2$ are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2. The ФМ2 path is limited to a maximum rate of 1 MHz . The $Ф \mathrm{M} 2$ path must be set to a deviation less than $Ф \mathrm{M} 1$. To avoid distortion and clipping, signals applied with any combination of $Ф \mathrm{M} 1, \Phi \mathrm{M} 2$, or $Ф \mathrm{M} 1+\Phi \mathrm{M} 2$ should not exceed $1 \mathrm{~V}_{\text {peak }}$. | | | |

[^12]
Amplitude modulation ${ }^{1,2}$ (Option UNT) (typical)

Depth	Linear mode	Exponential (log) mode (downward modulation only)	
		Option UNT	Option UNT + 1SM ${ }^{3}$
Maximum			
ALC on	> 90\%	$>20 \mathrm{~dB}$	$>20 \mathrm{~dB}$
ALC off with power search ${ }^{4}$			
or ALC on with deep AM ${ }^{5}$	> 95\%	$>50 \mathrm{~dB}{ }^{6}$	$>60 \mathrm{~dB}^{6}$
Settable	0 to 100\%	0 to 40 dB	0 to 40 dB
Sensitivity	0 to $100 \% / \mathrm{V}$	0 to $40 \mathrm{~dB} / \mathrm{V}$	0 to $40 \mathrm{~dB} / \mathrm{V}$
Resolution	0.1\%	0.01 dB	0.01 dB
Depth accuracy (1 kHz rate)			
ALC on	$\pm(6 \%$ of setting $+1 \%)$	$\pm(2 \%$ of setting $+0.2 \mathrm{~dB})$	$\pm(2 \%$ of setting $+0.2 \mathrm{~dB})$
ALC off with power search ${ }^{4}$ or ALC on with deep AM ${ }^{5}$			
$<2 \mathrm{~dB}$ depth	--	--	$\pm 0.5 \mathrm{~dB}$
$<10 \mathrm{~dB}$ depth	--	--	$\pm 1 \mathrm{~dB}$
$<40 \mathrm{~dB}$ depth	--	--	$\pm 2 \mathrm{~dB}$
$<50 \mathrm{~dB}$ depth	--	--	$\pm 3 \mathrm{~dB}$
$<60 \mathrm{~dB}$ depth	--	--	$\pm 5 \mathrm{~dB}$
External input (selectable polarity)			
Sensitivity for indicated depth	$1 \mathrm{~V}_{\text {peak }}$	-1 V or +1 V	-1 V or +1 V
Maximum allowable	$\pm 1 \mathrm{~V}$	$\pm 3.5 \mathrm{~V}^{7}$	$\pm 3.5 \mathrm{~V}^{7}$
Rates (3 dB bandwidth, 30\% depth)			
DC coupled	0 to 100 kHz		
AC coupled	10 Hz to 100 kHz (usea		
Distortion ${ }^{\mathbf{9}}$ (1 kHz rate, ALC On, linear mode, total harmonic distortion)			
30\% AM	< 1.5\%		
60\% AM	< 2%		
Paths	$A M 1$ and $A M 2$ are sum of the modulation sour	lly for composite modulatio Ex2, Internal1, Internal2	path may be switched to a

1. All AM specifications are typical. For carrier frequencies below 2 MHz or above 50 GHz , AM is useable but not specified. Unless otherwise stated, specifications apply with ALC on, deep AM off, and envelope peaks within ALC operating range (-20 dBm to maximum output power, excluding step-attenuator setting.)
2. Below 250 MHz with Option UNX or UNY low phase noise mode on, AM is useable but not recommended or specified.
3. Option 1SM scan modulation is available with Option 520 only, and provides exponential (log) AM with improved accuracy. In this mode, maximum output power is reduced up to 3 dB below 3.2 GHz .
4. ALC off is used for narrow pulse modulation and/or high AM depths with envelope peaks below $A L C$ operating range (40 dB). Carrier power level will be accurate after a power search is executed. (See pulse modulation section for an explanation of power search).
5. Deep AM with ALC on provides increased AM depths and improved distortion, together with closed-loop internal leveling. This mode must be used with a repetitive AM waveform (frequency > 10 Hz) with peaks > -5 dBm (nominal, excluding step-attenuator setting).
6. Modulation depths greater than 40 dB require an external input greater than $\pm 1 \mathrm{~V}$, and are not available with the internal modulation source.
7. If 600Ω input impedance is selected, maximum input voltage is $\pm 6 \mathrm{~V}$.
8. For Options 550 and 567 , maximum rate is 80 kHz from 20 GHz to 40 GHz .
9. For Option 521, distortion specifications apply for envelope peaks within the range of -15 dBm to +24 dBm , excluding step-attenuator setting

External modulation inputs (Ext1 \& Ext2) (Option UNT)

Modulation types	AM, FM, and ФM
Input impedance	50Ω or 600Ω (nom) switched
High/low indicator	100 Hz to 10 MHz BW, activated when input level error exceeds 3% (nom), ac coupled inputs only
Internal modulation source (Option UNT)	
Dual function generators	Provide two independent signals (internal1 and internal2) for use with AM, FM, ФM, or LF out.
Waveforms	Sine, square, positive ramp, negative ramp, triangle, Gaussian noise, uniform noise, swept sine, dual sine ${ }^{1}$
Rate range	
Sine	0.5 Hz to 1 MHz
Square, ramp, triangle	0.5 Hz to 100 kHz
Resolution	0.5 Hz
Accuracy	Same as timebase
LF out	
Output	Internal1 or internal2. Also provides monitoring of internal1 or internal2 when used for AM, FM, or ФМ
Amplitude	0 to $3 \mathrm{~V}_{\text {peak }}$ (nom) into 50Ω
Output impedance	50Ω (nom)
Swept sine mode	(frequency, phase continuous)
Operating modes	Triggered or continuous sweeps
Frequency range	1 Hz to 1 MHz
Sweep rate	0.5 to 100,000 sweeps/s, equivalent to sweep times $10 \mu \mathrm{~s}$ to 2 s
Resolution	0.5 Hz (0.5 sweep/s)

[^13]
Pulse modulation ${ }^{1}$ (Option UNU or UNW)

On/off ratio	Option UNU	Option UNW
	80 dB (typ)	80 dB
Rise/fall times (Tr, Tf)		
Options 520, 532, 540, 550, 567		
50 to 400 MHz	10 ns (typ)	15 ns (10 ns typ)
$>400 \mathrm{MHz}$	6 ns (typ)	10 ns (6 ns typ)
Option 521		
50 MHz to 1 GHz	25 ns (typ)	30 ns (25 ns typ)
1 to 3.2 GHz	12 ns (typ)	15 ns (12 ns typ)
$>3.2 \mathrm{GHz}$	6 ns (typ)	10 ns (6 ns typ)
Minimum pulse width		
ALC on	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
ALC off		
Options 520, 532, 540, 550, 567		
50 to 400 MHz	150 ns	30 ns
$>400 \mathrm{MHz}$	150 ns	20 ns
Option 521		
50 MHz to 1 GHz	150 ns	60 ns
1 to 3.2 GHz	150 ns	30 ns
$>3.2 \mathrm{GHz}$	150 ns	20 ns
Repetition frequency		
ALC on	10 Hz to 500 kHz	10 Hz to 500 kHz
ALC off	dc to 3 MHz	dc to 10 MHz
Level accuracy (relative to CW)		
ALC on	$\pm 0.5 \mathrm{~dB}(0.15 \mathrm{~dB}$ typ)	$\pm 0.5 \mathrm{~dB}$ (0.15 dB typ)
ALC off with power search ${ }^{2}$		
50 MHz to $3.2 \mathrm{GHz}{ }^{3}$	$\pm 0.7 \mathrm{~dB}$ (typ)	$\pm 0.7 \mathrm{~dB}$ (typ)
$>3.2 \mathrm{GHz}$	$\pm 0.5 \mathrm{~dB}$ (typ)	$\pm 0.5 \mathrm{~dB}$ (typ)
Width compression (RF width relative to video out)	$\pm 5 \mathrm{~ns}$ (typical)	$\pm 5 \mathrm{~ns}$ (typical)

1. With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between -5 and +10 dBm or maximum specified power, whichever is lower. Above 50 GHz or below 50 MHz , pulse modulation is useable; however performance is not warranted. Pulse modulation does not operate if Option UNX or UNY low phase noise mode is on
2. Power Search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing Power Search, RF power will be present for typically 10 to 50 ms ; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range. Power search may not operate above the maximum specified output power.
3. $\pm 0.8 \mathrm{~dB}$ (typical) for Option 550 and Option 567.

Video feed-through ${ }^{1}$	Option UNU	Option UNW
50 to 250 MHz	<3\% (typ)	< 3\% (typ)
> 250 to 400 MHz	< 11\% (typ)	< 11\% (typ)
>0.4 to 3.2 GHz	< 6% (typ)	< 6\% (typ)
> 3.2 GHz without Opt 521	$<2 \mathrm{mV}$ pk-pk (typ)	$<2 \mathrm{mV}$ pk-pk (typ)
> 3.2 GHz with Opt 521	< 50 mV pk-pk (typ)	$<50 \mathrm{mV}$ pk-pk (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)		
50 to 250 MHz	35 ns (nom)	35 ns (nom)
>0.25 to 3.2 GHz	25 ns (nom)	25 ns (nom)
> 3.2 GHz	30 ns (nom)	30 ns (nom)
Pulse overshoot		
Without Option 521	< 10\% (typ)	< 10\% (typ)
With Option 521	<20\% (typ)	<20\% (typ)
Input level	+1 V = RF on	$+1 \mathrm{~V}=\mathrm{RF}$ on
Input impedance	50Ω (nom)	50Ω (nom)

1. With Option $1 E 1$ step attenuator in 0 dB position. Above 3.2 GHz , video feed-through decreases with step attenuator setting. Below 3.2 GHz , video feed-through is expressed as a percentage of RF output level.

Measured pulse modulation envelope
Frequency $=9$ GHz, amplitude $=10 \mathrm{dBm}$, ALC Off, $10 \mathrm{~ns} / \mathrm{div}$

Internal pulse generator (Option UNU or UNW)

Modes	Free-run, triggered, triggered with delay, doublet, and gated. Triggered with delay, doublet, and gated require external trigger source.
Period (PRI) (Tp)	70 ns to 42 s (repetition frequency: 0.024 Hz to 14.28 MHz)
Pulse width (Tw)	10 ns to 42 s
Delay (Td)	0 to $\pm 42 \mathrm{~s}$
Free-run mode	75 ns to 42 s with ± 10 ns jitter
Triggered with delay and doublet modes	10 ns (width, delay, and PRI)
Resolution	

- Td video delay (variable)
- Tw video pulse width (variable)
- Tp Pulse period (variable)
- Tm RF delay
- Trf RF pulse width
- Tf RF pulse fall time
- Tr RF pulse rise time
- Vor pulse overshoot
- Vf video feedthrough

Simultaneous modulation

All modulation types ($F M, A M, \phi M$, and pulse modulation) may be simultaneously enabled except: $F M$ with ϕM, and linear $A M$ with exponential AM. AM, FM, and ϕM can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2). Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

Remote programming	
Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.
Control languages	SCPI version 1997.0. Completely code compatible with previous PSG signal generator models:
	- E8241A
	- E8244A
	- E8251A
	- E8254A
	- E8247C
	- E8257C
	The E8257D will emulate the applicable commands for the following signal generators, providing general compatibility with ATE systems:
	- Agilent 8340 -Series (8340/41B)
	- Agilent $8360-$ Series ($836 \times x$ B/L)
	- Agilent 83700-Series (837xxB)
	- Agilent 8662A/63A
	- Agilent 8643A/8644B
	- Aeroflex 2040 Series
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LEO, SR1, RL1, PP0, DC1, DT0, C0, E2.
Agilent IO libraries	Agilent's 10 Library Suite ships with the E8257D to help you quickly establish an error-free connection between your PC and instruments - regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.

General specifications

Power requirements	$100 / 120$ VAC $50 / 60 / 400 \mathrm{~Hz}$; or $220 / 240$ VAC $50 / 60 \mathrm{~Hz}$, (automatically selected); < 250 W typical, 450 W maximum
Operating temperature range	0 to $55^{\circ} \mathrm{C}$
Storage temperature range ${ }^{1}$	-40 to $70^{\circ} \mathrm{C}$
Altitude	0 to 4600 m ($15,000 \mathrm{ft}$.)
Humidity	Relative humidity - type tested at $95 \%,+40^{\circ} \mathrm{C}$ (non-condensing)
Environmental testing	Samples of this product have been tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class $3 .{ }^{2}$
ISO compliant	This family of signal generators is manufactured in an ISO-9001 registered facility in concurrence with Agilent's commitment to quality.
EMC	Conforms to the immunity and emission requirements of IEC/EN 61326-1 including the conducted and radiated emission requirements of CISPR Pub 11/2003 Group 1 class A.
Acoustic noise	Normal: 51 dBA (nom) Worst case: $62 \mathrm{dBA}(\text { nom })^{3}$
Storage	Memory is shared by instrument states and sweep list files. There is 14 MB of flash memory available in the E8257D PSG. Depending on how the memory is used, a maximum of 1000 instrument states can be saved.
Security	Display blanking Memory clearing functions (See Application Note, "Security Features of Agilent Technologies Signal Generators," Part Number E4400-90621) With Option 008, all user-written files are stored on an 8 GByte removable flash memory card.
Compatibility	Agilent 83550 Series millimeter heads OML millimeter source modules Agilent 8757D scalar network analyzers Agilent EPM Series power meters
Self-test	Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test.
Weight	$<22 \mathrm{~kg}$ (48 lb.) net, $<30 \mathrm{~kg}$ (68 lb.) shipping
Dimensions	$178 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \mathrm{~W} \times 515 \mathrm{~mm} \mathrm{D} \mathrm{(7"H}{ }^{\prime \prime}$ 16.8" $\left.\mathrm{W} \times 20.3^{\prime \prime} \mathrm{D}\right)$
Recommended calibration cycle	24 months

1. During storage below $-20^{\circ} \mathrm{C}$, instrument states may be lost.
2. As is the case with all signal generation equipment, phase noise specifications are not warranted in a vibrating environment.
3. This is louder than typical Agilent equipment: 60 dBA (nom).

Input/Output Descriptions

Front panel connectors (all connectors are BNC female unless otherwise noted.) ${ }^{1}$	
RF output	Output impedance 50Ω (nom)
Option 520 and 521	Precision APC-3.5 male, or Type-N female with Option 1ED Caution: Option 521 output power > 1 Watt
Options 532, 540, and 550	Precision 2.4 mm male; plus $2.4-2.4 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters
Option 567	Precision 1.85 mm male; plus $1.85-1.85 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters
ALC input	Used for negative external detector leveling. Nominal input impedance $120 \mathrm{k} \Omega$, damage level $\pm 15 \mathrm{~V}$.
LF output	Outputs the internally generated LF source. Nominal output impedance 50Ω.
External input 1	Drives either AM, FM, or $\Phi \mathbf{M}$. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
External input 2	Drives either AM, FM, or Φ M. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$ -
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation. Also accepts external trigger pulse input for internal pulse modulation. Nominal impedance 50Ω. Damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
Pulse video out	Outputs a signal that follows the RF output in all pulse modes. TTL-level compatible, nominal source impedance 50Ω.
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width, during internal and triggered pulse modulation. TTL-level compatible, nominal source impedance 50Ω.

[^14]
Rear panel connectors (All connectors are BNC female unless otherwise noted.)

Auxiliary interface (dual mode)	Used for RS-232 serial communication and for master/slave source synchronization. (9-pin subminiature female connector). For master/slave operation, use Agilent part number 8120-8806 master/slave interface cable.
GPIB	Allows communication with compatible devices
LAN	Allows 10BaseT LAN communication
10 MHz input	Accepts a 10 MHz external reference (timebase) input. Nominal input impedance 50Ω Damage levels $>+10 \mathrm{dBm}$
10 MHz output	Outputs internal or external reference signal. Nominal output impedance 50Ω. Nominal output power +8 dBm .
Sweep output (dual mode)	Supplies a voltage proportional to the RF power or frequency sweep ranging from 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1μ s pulses (nom) across a ramp (analog) sweep. Number of pulses can be set from 101 to 1601 by remote control from the 8757D. Output impedance: < 1Ω (nom), can drive $2 \mathrm{k} \Omega$.
Stop sweep in/out	Open-collector, TTL-compatible input/output. In ramp sweep operation, provides low level (nominally 0 V) during sweep retrace and bandcross intervals, and high level during the forward portion of the sweep. Sweep will stop when grounded externally, sweep will resume when allowed to go high.
Trigger output (dual mode)	Outputs a TTL signal. High at start of dwell, or when waiting for point trigger; low when dwell is over or point trigger is received. In ramp sweep mode, provides 1601 equally-spaced 1μ s pulses (nom) across a ramp sweep. When using LF Out, provides $2 \mu \mathrm{~s}$ pulse at start of LF sweep .
Trigger input	Accepts 3.3V CMOS signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep. Damage levels $\geq+10 \mathrm{~V}$ or $\leq-4 \mathrm{~V}$.
Source module interface	Agilent 83550 Series mm source modules: Provides bias, flatness correction and leveling connections. OML SxxMS-AG mm source modules: Provides power to the module and returns frequency multiplication information from the module.
Source settled	Provides an output trigger that indicates when the signal generator has settled to a new frequency or power level. High indicates source not settled, Low indicates source settled.
Z-axis blank/markers	During ramp sweep, supplies +5 V (nom) level during retrace and bandswitch intervals. Supplies -5 V (nom) level when the RF frequency is at a marker frequency.
10 MHz EFC	(Option UNX or UNY) Accepts an external DC voltage, ranging from -5 V to +5 V , for electronic frequency control (EFC) of the internal 10 MHz reference oscillator. This voltage inversely tunes the oscillator about its center frequency approximately $-0.07 \mathrm{ppm} / \mathrm{V}$. The nominal input impedance is greater than $1 \mathrm{M} \Omega$.
1 GHz out	(Option UNX or UNY) Low noise 1 GHz reference output signal, approximately +5 dBm (nom).
Removable flash memory drive	Accepts 8 GB compact flash memory card for optional non-volatile memory (Option 008 only). All user information (Save/Recall settings, flatness files, presets, etc) is stored on removable memory card when Option 008 is installed.

[^15]
Options, Accessories, and Related Products

Model/option	Description
E8257D-520	Frequency range from 250 kHz to 20 GHz
E8257D-521	Ultrahigh output power, frequency range from 10 MHz to 20 GHz
E8257D-532	Frequency range from 250 kHz to 31.8 GHz
E8257D-540	Frequency range from 250 kHz to 40 GHz
E8257D-550	Frequency range from 250 kHz to 50 GHz
E8257D-567	Frequency range from 250 kHz to 67 GHz
E8257D-007	Analog ramp sweep
E8257D-008	8 GB removable flash memory
E8257D-UNX	Ultra low phase noise
E8257D-UNY	Enhanced ultra low phase noise
E8257D-UNT	AM, FM, phase modulation, and LF output
E8257D-UNU	Pulse modulation
E8257D-UNW	Narrow pulse modulation
E8257D-1E1	Step attenuator
E8257D-1ED	Type-N (f) RF output connector (Option 520 and 521 only)
E8257D-1EH	Improved harmonics below 2 GHz (low-pass filters standard with Option 521)
E8257D-1EM	Moves all front panel connectors to the rear panel
E8257D-1EU	High output power (standard with Option 521)
E8257D-1CN	Front handle kit
E8257D-1CM	Rackmount flange kit
E8257D-1CP	Rackmount flange and front handle kit
E8257D-1SM ${ }^{1}$	Scan modulation (Option 520 only)
E8257D-C09	Move all front panel connectors to the rear panel except for the RF output connector
E8257D-UK6	Commercial calibration certificate and test data
E8257D-A6J	ANSI 7540-1 compliant calibration with test data
E8257D-1A7	ISO 17025 compliant calibration with test data
E8257D-CD1	CD-ROM containing the English documentation set
E8257D-ABA	Printed copy of the English documentation set
E8257D-OBW	Printed copy of the assembly-level service guide
Customized product solutions	
E8257D-H1S	1 GHz external frequency reference input and output
E8257D-HCC	Connections for phase coherency > 250 MHz
E8257D-H30 ${ }^{2}$	Internal mixer for up conversion capability in the 20, 31.8, and 40 GHz models
E8257D-H60 ${ }^{2}$	Internal mixer for up conversion capability in the 50 and 67 GHz models
E8257D-H65 ${ }^{2}$	Internal mixer and doubler for up conversion capability in the $20 \mathrm{GHz}, 31.8 \mathrm{GHz}$, and 40 GHz models

[^16]| Accessories | Master/slave interface cable |
| :--- | :--- |
| $8120-8806$ | 8 GByte compact flash memory card |
| $1819-0427$ | Rack slide kit |
| E8251-60419 | OML Inc. Millimeter source module, 50 GHz to 75 GHz at +8 dBm |
| E8257DS15 ${ }^{1}$ | OML Inc. Millimeter source module, 60 GHz to 90 GHz at +6 dBm |
| E8257DS12 ${ }^{1}$ | OML Inc. Millimeter source module, 75 GHz to 110 GHz at +5 dBm |
| E8257DS10 ${ }^{1}$ | OML Inc. Millimeter source module, 90 GHz to 140 GHz at -2 dBm |
| E8257DS08 ${ }^{1}$ | OML Inc. Millimeter source module, 110 GHz to 170 GHz at -6 dBm |
| E8257DS06 ${ }^{1}$ | OML Inc. Millimeter source module, 140 GHz to 220 GHz at -12 dBm |
| E8257DS05 ${ }^{1}$ | OML Inc. Millimeter source module, 220 GHz to 325 GHz at -25 dBm |
| E8257DS03 ${ }^{1}$ | OML Inc. Millimeter source module, 325 GHz to 500 GHz at -35 dBm |
| E8257DS02 ${ }^{1}$ | |

[^17]
Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

LXI

www.Ixistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

 www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.
Related Agilent Literature

Agilent PSG Microwave Signal Generators Brochure,
Literature number 5989-1324EN
E8257D PSG Microwave Analog Signal Generators Configuration Guide, Literature number 5989-1325EN

E8267D PSG Microwave Vector Signal Generator Data Sheet,
Literature number 5989-0697EN
E8267D PSG Microwave Vector Signal Generator Configuration Guide, Literature number 5989-1326EN

E8663D PSG RF Analog Signal Generator Data Sheet,
Literature number 5990-4136EN
E8663D PSG RF Analog Signal Generator Configuration Guide,
Literature number 5990-4137EN
Millimeter Wave Source Modules from OML, Inc. for the
Agilent PSG Signal Generators Technical Overview,
Literature number 5989-2923EN
Security Features of Agilent Technologies Signal Generators,
Part Number E4400-90621

Web Resources

For additional information, visit: www.agilent.com/find/psg
For more information about renting, leasing or financing Agilent's latest technology, visit: www.agilent.com/find/buy/alternatives
For more accessory information, visit: www.agilent.com/find/accessories For additional description of Agilent's IO Libraries Suite features and installation requirements, visit: www.agilent.com/find/iosuite/database
www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$
Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2012 Published in USA, August 14, 2012 5989-0698EN

[^0]: 1. For Option 521, performance is degraded below 500 MHz . Refer to specifications for more detail.
 2. In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.
 3. Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz . CW switching speed to within 0.05% of final frequency is $\geq 5 \mathrm{~ms}$ (nom).
 4. Add 12 ms (typical) when switching from greater than 3.2 GHz to less than 3.2 GHz .
 5. With Option 1EH low band harmonic filters off. With the 1EH filters turned on, add 4 ms .
 6. N is a factor used to help define certain specifications within the document.
 7. Not verified by Agilent N7800A TME Calibration and Adjustment Software. Daily aging rate may be verified as a supplementary chargeable service, on request.
[^1]: 1. To optimize phase noise use $5 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
 2. 19 ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz .
[^2]: 1. Maximum power specifications are warranted from 15 to $35^{\circ} \mathrm{C}$, and are typical from 0 to $15^{\circ} \mathrm{C}$. Maximum power over the 35 to $55^{\circ} \mathrm{C}$ range typically degrades less than $2 d B$.
 2. With Option 1EH low-pass filters below 2 GHz switched off, unless otherwise specified.
 3. In this mode, harmonics are large and output power refers to the total power including harmonics.
 4. With Option 1EH low-pass filters below 2 GHz switched off. With filters on, this specification applies above 2 GHz .
 5. Option 521 includes low-pass filters below 2 GHz as standard.
[^3]: 1. Options 550 and $567: 0.03 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) above 2 GHz . Option 521: $0.03 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) below 500 MHz .
 2. Compatible with Agilent EPM Series (E4418B and E4419B) power meters.
 3. For Options 550 and 567, SWR is $1.7: 1$ (typ) from 1.7 to 2.0 GHz when the step attenuator is set to 0 dB .
[^4]: 1. Specifications are typical for harmonics beyond specified frequency range (beyond 50 GHz for Option 567). Specifications are with Option 1EH Low-pass Filters below 2 GHz off and Option UNX or UNY Iow phase noise mode off unless noted.
 2. Below 250 MHz in ramp sweep mode (Option 007), Option 1EH filters are always off. Refer to harmonic specification with filters off.
 3. Option 521 includes low-pass filters below 2 GHz as standard.
 4. -45 dBc below 60 MHz .
[^5]: 1. Sub-harmonics are defined as carrier freq ${ }^{*}(x / y)$, where x and y are integers, and x is not an integer multiple of y. Specifications are typical for sub-harmonics beyond specified frequency range. For Option 567, specifications are typical for carrier frequencies above 50 GHz .
 2. Specifications are typical for spurs beyond specified frequency range (beyond 50 GHz for Option 567). Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets > 1 MHz .
 3. Excluding external mechanical vibration.
 4. For offsets $>10 \mathrm{kHz}$.
 5. Option UNX or UNY Iow phase noise mode.
[^6]: 1. Calculated from phase noise performance in CW mode only at +10 dBm . For other frequencies, data rates, or bandwidths, please contact your sales representative.
[^7]: 1. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$, excluding external mechanical vibration. Option UNY specifications at 1 kHz offset apply from 25 to $35{ }^{\circ} \mathrm{C}$.
 2. Measured at +10 dBm or maximum specified power, whichever is less.
[^8]: 1. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$, excluding external mechanical vibration. Option UNY specifications at 1 kHz offset apply from 25 to $35^{\circ} \mathrm{C}$.
 2. Measured at +10 dBm or maximum specified power, whichever is less.
 3. Measured with filters off at +16 dBm or maximum achievable leveled power, whichever is less. Without Option 1EU, frequencies of 10 MHz and below are not specified. Without Option 1EU or 521, offsets of 10 kHz and greater are not specified.
[^9]: Measured phase noise (data collected with the E5500 and plotted without spurs) Option UNY phase noise optimized for offsets less than 150 kHz (mode 1)

[^10]: 1. Above 50 GHz , FM is useable; however performance is not warranted.
 2. Through any combination of path1, path2, or path1 + path2.
 3. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).
 4. At the calibrated deviation and carrier frequency, within $5^{\circ} \mathrm{C}$ of ambient temperature at time of user calibration.
[^11]: 1. Above 50 GHz , phase modulation is useable; however performance is not warranted.
 2. Through any combination of path1, path2, or path $1+$ path2.
[^12]: 1. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).
 2. Path 1 is useable to 4 MHz for external inputs less than $0.3 \mathrm{~V}_{\text {peak; }}$ useable to 8 MHz for external inputs less than $0.1 \mathrm{~V}_{\text {peak }}$.
[^13]: 1. Internal2 is not available when using swept sine or dual sine modes.
[^14]: 1. Digital inputs and outputs are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels
[^15]: 1. Digital inputs and outputs are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
[^16]: 1. Requires Option UNT and Option 520.
 2. Requires Option 1E1.
[^17]: 1. Millimeter source module is a product of Oleson Microwave Labs, Inc. and requires Option 1EU.
