
EALFA / PALFA  BASEBAND MIXERS 
 

Theory of operation & Circuit Description 
 
 

Introduction: 
 
The purpose of this subsystem is to convert a 300-MHz segment of IF spectrum originating in 
the ALFA receivers to quadrature baseband signals for subsequent A/D conversion.  The design 
is targeted at an input spectrum spanning 100 to 400 MHz.  However, the maximum sample rate 
of the A/D converters is only about 200 MHz, so it is necessary to split the input band into two 
sub-bands, each 150 MHz wide, so that the highest frequency component in any of the outputs is 
comfortably less than 100 MHz (75 MHz in reality).   The nominal LO frequencies for this 
subsystem are 175 MHz for the “IF low band” and 325 MHz for the “IF high band”.   
 
Note that there is some potential for confusion about “low band” versus “high band”.  The IF low 
and high bands are reversed from the RF or “sky” low and high bands because the ALFA 
system’s 1st LO frequency is higher than the top of the RF band, resulting in a frequency order 
inversion.  In this document the terms “low band” and “high band” will always refer to the IF 
frequency domain unless otherwise noted. 
 
Note that the ALFA system includes a total of fourteen receiver channels to accommodate two 
polarizations for each of seven “pixels”.  This baseband mixer system will also comprise 
fourteen channels, partitioned as one channel per board.  The two boards for a pixel’s two 
polarizations will be mounted in a common 1RU box.  Seven pixels, seven boxes.  Each box will 
provide two well-isolated sets of outputs, comprising 16 individual signals, derived from two 
sets * two sub-bands * two polarizations * two “phases” (I & Q). 
 
This discussion will cover only a single channel, which does include both sub-bands.  And the 
discussion will concentrate on only one sub-band, because the other sub-band is virtually 
identical except for filter passband limits and a different model number for the quadrature hybrid 
used as the LO splitter. 
 
 
Notes regarding the figures: 
 
For the following please refer to Figure 1 (block diagram) and Figures 2 through 17 (ORCAD 
diagrams).  For most of the discussion you will be able to follow along using either Figure 1 or 
Figure 2, and references to other figures will mostly be optional pointers to more detailed 
schematics for the curious.  In some cases, however, references to the underlying schematics will 
be important; the relevant figures will be emphatically pointed out in such cases.  The reference 
designators used in the block diagram correspond to those used in the actual ORCAD 
schematics.  The block diagram also includes information about anticipated maximum signal 
levels. 
 



The component references made in the course of the discussion will generally be limited to those 
for the low band path (and for the EALFA ‘I’ channel sub-paths beyond the demodulator stage), 
and schematics are only provided within the same constraint.  With the exception of the different 
quadrature hybrid in the high band demodulator block, the schematics for the corresponding 
blocks in other paths are identical except for different reference designators. 
 
Signal Flow Description: 
 
The full bandwidth input signal is applied to J3, whereupon it is split into two identical signals 
by H1-1 (Figure 3).  One of these signals is destined to be filtered for the low sub-band (100-250 
MHz, hereafter referred to simply as the low band), and the other is filtered for the high band 
(250-400 MHz).  Note that in the present design only lowpass filters are used, for two reasons: 
flexibility and economy.  It was thought that some users could benefit from the ability to slightly 
modify the choice of IF frequencies, and using full bandpass filtering would restrict this freedom.  
The ECB design does, however, include pads for the inclusion of appropriate highpass filters in 
one or both paths as well, in the event that unforeseen problems arise from the exclusive use of 
lowpass filters. 
 
Now let’s pursue the signal through the low band.  Following the low band filter (LPF1), the 
signal passes through a programmable step attenuator (H2-1, Figure 4) which gives 1 dB 
granularity over an attenuation range of about 30 db.   
 
Note that the matter of what signal levels to push through this system is fraught with 
compromise.  A high signal level reduces the relative contribution of noise, ingress, and A/D 
spurs, at the price of reduced dynamic range.  That is, the system will be more susceptible to 
development of intermodulation products and will be driven deeper into saturation by the high-
amplitude radar pulses that inhabit portions of the L-band.  Operating with a low signal level, on 
the other hand, leaves the user with increased corruption from the inevitable essentially fixed-
amplitude disturbances such as A/D spurs, ingress of various signals due to imperfect shielding, 
etc.  The purpose for providing user control of the step attenuator settings is to allow the user to 
select the best compromise for his/her particular application.  It is anticipated that with 
experience, a reasonably-fixed set of good attenuator settings for each general observing 
application will emerge. 
 
Next the signal passes through two gain stages (H3-1 & H3-3, Figures 5 & 6) with an 
intermediate fixed attenuator (U5).  Unfortunately the input signal frequently includes the high-
amplitude radar pulses alluded to earlier, and the intermediate attenuators seen at several places 
in this design are chosen to avoid the risk of outright burnout of subsequent stages.  It may be 
instructive to review the signal level captions on Figure 1.  This architecture of alternating gain 
and attenuation stages also provides the benefits of better reverse isolation through the path as 
well as avoiding the risk of instabilities or oscillation if some of the amplifiers are not as 
unconditionally stable as the manufacturer claims. 
 
Following the second gain stage, the low band signal is once again split into two paths, by H1-2 
(Figure 3).  The primary path takes the signal through attenuator U4 to the quadrature mixer 
block H4-1 (now definitely check out Figure 8).  We’ll get back to the secondary path later.  



Within the mixer block the signal is split yet another time by H1, to the two diode ring mixers 
U40 & U45.  These mixers are also provided LO signals which are in quadrature phase, having 
been passed through amplifier U43 and the quadrature hybrid U42.  The two LO signals also 
pass through attenuators U41 & U44 on their way to the mixers in order to provide better 
terminations to the outputs of U42 in order to obtain the best possible quadrature phase accuracy 
(we hope!). 
 
The in-phase (I) and quadrature-phase (Q) mixer outputs each pass through an attenuator (U3 for 
‘I’, U12 for ‘Q’) to provide good broadband terminations to the mixers’ IF ports, then to 75 MHz 
lowpass filters LPF2 and LPF3.  It is these filters that are primarily responsible for blocking 
undesired high frequency energy that would cause aliasing in the A/D converters, which will 
normally be operated at a sample rate of 170 MHz.  Note that the I & Q signals need flat 
response down to nearly zero frequency for the remainder of the signal path to the A/D 
converters- this factor will impact the design of subsequent stages.  
 
Next, the band-limited I & Q signals are each split into two paths for the two isolated outputs, 
using resistive splitters for the sake of their DC frequency response.  Resistive splitters, however, 
provide very poor isolation between their outputs; therefore the remainder of the path includes 
multiple amplifiers (H5-1 & H6-1) along with attenuators U1 & U2 in order to provide good 
reverse isolation.  In the event that one output of each pair is left unterminated, negligible impact 
occurs to the other output. 
 
Note that the amplifiers H5-1 & H6-1 (Figures 9 & 10, respectively) deviate from standard 
practice in that the inductors usually found in the bias networks are omitted, making it practical 
to obtain reasonably flat frequency response down to very low frequencies.  The price paid is 
slightly reduced values for the gain and for the maximum output level from the amplifiers. 
 
Now let’s carry on with the previously-deferred discussion of the secondary signal path 
following the splitter H1-2.  The purpose of this path is to provide an analog square-law-detected 
output for convenience in setting the step attenuator and for quick verification that reasonable 
signal levels are present.  The signal passes through attenuator U8, amplifier H3-5 (Figure 5), 
and attenuator U9 on its way to the detector module H7-1 (now see Figure 11).  The detector 
module includes a simple diode detector (R44, D1, & C49) followed by gain stage U47A and 
inverter stage U47B.  This detector is operated in the square law regime for reasonable system 
noise levels, but will generally be pushed beyond the square law regime by the radar pulses.  
Together, these stages provide a very low DC drift differential output with a nominal sensitivity 
of 100 mV / µW (based on datasheet specifications for the detector diode). 
 
The detector’s differential output is brought to pin jacks on the front panel; additionally the 
detector’s output may read back via the attenuator control interface (H8, please see Figure 12). 
 
The high-band signal path is identical to that of the low-band, with two exceptions: 

• The lowpass filter cutoff is nominally 400 MHz instead of 250 MHz. 
• The LO frequency is nominally 325 MHz instead of 175 MHz. 
• The quadrature hybrid used in the demodulator block is a different model for the higher 

LO frequency. 
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