
Multi-channel Digital Receiver Data Acquisition System for the Arecibo
Radar

A thesis submitted
to the Graduate School

University of Arkansas at Little Rock

in partial fulfillment for requirements
for the degree of

MASTER OF SCIENCE

in Applied Science

in the Department of Applied Science
of the Donaghey Systems Engineering and Science

August 2006

Ryan Seal

B.S., University of Arkansas at Little Rock, 2001

c©Copyright 2006 Ryan Seal
All Rights Reserved

1

This thesis, “Multi-channel Digital Receiver Data Acquisition System for the Arecibo
Radar”, by Ryan Seal, is approved by:

Thesis Advisor

Dr. Urbina, Julio
Professor of ECET

Thesis Committee

Dr. Al-Rizzo, Hussain
Professor of Systems Engineering

Dr. Milanova, Mariofanna
Professor of Computer Science

Dr. Mohan, Seshadri
Chair of Systems Engineering

Program Coordinator

Dr. Al-Shukri, Haydar
Applied Science

Graduate Dean

2

In presenting this thesis in partial fulfillment of requirements for a Master’s degree
at the University of Arkansas at Little Rock, I agree that the library should make copies
freely available for inspection. I further agree that extensive copying of this thesis is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Any reproduction for any purpose or by any means shall not be allowed
without my written consent.

Signature

Date

3

Contents

Abstract ii

Acknowledgments iii

List of Figures vi

List of Tables vi

List of Abbreviations viii

1 Introduction 1

1.1 Radar Techniques . 2

1.2 Radar Receivers . 4

1.3 Digital Signal Processing . 8

1.3.1 Analog-to-Digital Conversion . 8

1.3.2 Discrete Time Systems . 14

1.3.3 Multirate Systems . 17

1.4 Software Analysis and Design . 22

1.4.1 Object Oriented Programming . 22

1.4.2 Unified Modeling Language . 23

4

2 System Analysis and Design 25

2.1 Requirements Analysis . 26

2.2 System Configuration . 29

2.2.1 Configuration Graphical Interface 43

2.3 Data Acquisition . 45

2.3.1 Hardware / Software Interface . 45

2.4 Real-Time Data Display . 52

2.5 Data Format and Storage . 52

2.5.1 Data Header Format . 58

3 Radar Observations 60

3.1 Meteor Observations . 60

3.1.1 Detection Algorithm . 61

3.1.2 Parameter Estimation . 62

3.2 Plasma Line Observations . 67

4 Conclusions and Future Work 69

Appendix 69

A Convolution Sum Derivation . I

B MATLAB Programs . II

B.1 metFreq.m . II

i

Abstract

Digital Receivers are commercially available, cost effective solutions that are becoming

commonplace in modern data acquisition systems (DAS). The digital receiver has the

ability to be reconfigured via software, making modern DAS flexible for a variety of

applications. This thesis describes the design and implementation of a complete data

acquisition system using a general purpose computer (GPC) equipped with a digital

receiver card. This system will replace the older DAS (baseband sampling) used by the

Space and Atmospheric Science (SAS) group at the Arecibo Observatory (AO). Emphasis

is placed on a generic system easily adaptable to a specific application with minimal

effort. A full discussion of the system will be given with concentration on the receiver’s

capabilities and software design. Algorithms and design strategy are discussed to properly

document optimizations and features required by the system. Finally, we present two

radar observations with this system and illustrate results.

ii

Acknowledgments

Writing a thesis has proven more of a challenge than I ever imagined. Much time has

passed and many people have been involved along the way. First and foremost, I would

like to thank my thesis advisor Prof. Julio Urbina for providing the opportunity, support,

and his persistent personality which has helped complete this work. I also thank Jocelyn,

family, and friends for putting up with my sometimes less than joyous moods. The

entire staff at the Arecibo Observatory deserve thanks with special thanks to Dr. Sixto

Gonzalez, Dr. Mike Sulzer, and Dr. Nestor Aponte for valuable insight, advice, and a

few good laughs. Thanks to Jeff Hagen for assistance in the development of the device

driver. Thanks to Dr. Diego Janches for his help with meteor analysis. Thanks to

Prof. Farzad Kamalabadi and those involved from the University of Illinios at Urbana-

Champaign for equipment and support. Thanks to Prof. Hirak Patangia for providing

motivation, direction, and interest in the subject of engineering. Lastly, I would like to

thank my thesis committee for their time. Of course, there are probably many others I

have forgotten about, so I now take the time to thank these individuals whose names fail

me now but will probably resurface after submission.

iii

List of Figures

1.1 Backscatter Radar Layout . 3

1.2 Range Time Diagram . 3

1.3 Signal Mixer . 5

1.4 Superheterodyne Analog Receiver with Quadrature mixing 6

1.5 Superheterodyne Digital Receiver with Quadrature mixers 6

1.6 Numerically Controlled Oscillator . 7

1.7 N-bit Digital Phase Wheel . 7

1.8 Digital Sampling . 10

1.9 2 level quantization . 11

1.10 noise probability distribution . 12

1.11 quantization error model . 13

1.12 3-bit two’s complement integer representation 14

1.13 Discrete Time System . 15

1.14 Basic System Operations . 15

1.15 Image bandwidth . 17

1.16 Decimation Image Filter . 17

1.17 Resulting spectrum from decimation . 18

1.18 Decimation Block Diagram . 18

iv

1.19 Quantization noise power . 19

1.20 Sampled images . 20

1.21 Interpolation Image Filter . 21

1.22 Resulting spectrum after interpolation 21

1.23 Interpolation Block Diagram . 21

2.1 Use Case Analysis . 27

2.2 Echotek-GC214PCI Diagram . 28

2.3 GC214 Class Diagram . 29

2.4 GC4016 Channel . 31

2.5 IOBlock Interface and IOChannel Class Diagrams 31

2.6 ZeroPad Diagrams . 33

2.7 Single Stage Discrete Integrator . 35

2.8 Single Stage Discrete Differentiator . 35

2.9 MultiStage Decimating CIC Filter . 36

2.10 CIC Diagrams . 37

2.11 Coarse Gain Diagrams . 39

2.12 FIR Diagrams . 39

2.13 CFIR Diagrams . 40

2.14 PFIR Diagrams . 40

2.15 Fine Gain Diagrams . 41

2.16 Resampler Diagrams . 42

2.17 Main Configuration Window . 43

2.18 Channel Configuration Window . 44

2.19 PLX9080 DMA Descriptor Layout . 46

v

2.20 Echotek-GC214 FIFO Layout . 46

2.21 Memory Buffer Layout . 48

2.22 Producer Consumer Activity Diagram 49

2.23 Consumer Activity Diagram . 50

2.24 Producer Activity Diagram . 50

2.25 Run Time GUI . 51

2.26 SHS Layout . 55

2.27 SHS File ID . 55

2.28 Keyword format . 55

2.29 Keyword format . 56

3.1 Range Time Intensity (RTI) plot . 63

3.2 IPP illustrating meteor in time domain 64

3.3 IPP power computation . 65

3.4 IPP cross-correlation with transmitted power to isolate detection 65

3.5 Isolated Meteor detection resulting from cross-correlation 66

3.6 Spectrum from meteor detection illustrating doppler spectrum 66

vi

List of Abbreviations

1. ADC Analog to Digital Converter

2. AO Arecibo Observatory

3. ASIC Application Specific Integrated Cicuit

4. CIC Cascaded Integrator Comb Filter

5. COTS Commercial off-the-shelf

6. DAS Data Acquisition System

7. DDC Digital DownConverter

8. DFT Discrete Fourier Transform

9. DNL Differential Non-Linearity

10. DSP Digital Signal Processing

11. FFT Fast Fourier Transform

12. FIR Finite Impulse Response

13. GPC General Purpose Computer

vii

14. IC Integrated Circuit

15. IF Intermediate Frequency

16. IIR Infinite Impulse Response

17. INL Integral Non-Linearity

18. IPP Inter-Pulse Period

19. LSB Least Significant Bit

20. LTI Linear Time Invariant Systems

21. NCO Numerically Controlled Oscillator

22. OOD Object Oriented Design

23. OOP Object Oriented Programming

24. OSR OverSampling Ratio

25. SDR Software Defined Radio

26. UML Unified Modeling Language

viii

Chapter 1

Introduction

Motivation for this work is to explore the use of commercial off-the-shelf (COTS) dig-

ital receivers, commonly used in Software Defined Radio (SDR) architectures, for use

in modern data aquisition systems (DAS); and, in this specific application, space and

atmospheric research at the Arecibo Observatory (AO). In the past, traditional receiver

architectures implemented a superheterodyne architecture combined with digitization

at baseband. In contrast, modern digital receiver architectures sample at intermediate

frequencies (IF). This key difference reduces the receiver architecture’s complexity and

lessens analog component specifications while removing gain and phase imbalances found

in analog quadrature mixers. Advances in semiconductor technology are slowly moving

the receiver’s digitization point closer to the receiver’s front-end. Currently, digital re-

ceivers are capable of digitizing data at intermediate frequencies (IF) and, depending on

the system, RF sampling is a possibility. Modern DAS [23, 14], the focus of this thesis,

encompass both back-end digital receivers and general purpose computers (GPC). The

combination of both digital receiver and GPC form the basis of a modern DAS which

typically perform three tasks: 1) digitization, or sampling of analog signal(s), 2) digital

1

signal processing (DSP), 3) formatting and storage of data. The remainder of this chapter

will provide an overview of techniques related to radar operation, signal processing, and

software design required for the discussion of modern DAS; which is the central topic of

this thesis. In Chapter 2, an in-depth study of the system’s internals, including the digital

receiver hardware and software is presented. Chapter 3 will illustrate data from multiple

radar observations. Finally, conclusions and future work are discussed in Chapter 4.

1.1 Radar Techniques

Backscatter radars operate in both transmit and receive modes by isolating each mode us-

ing mechanical (duplexer) or electrical (T/R switch) devices as shown in Figure 1.1.These

type of radars transmit short, periodic waveforms p(t) with a duty cycle

δ(t)

T
, (1.1)

where δ(t) is the transmitter pulse width and T is the period; (1.1) is also called the

interpulse period (IPP). The complete transmitted signal of the radar

s(t) = p(t)ejω0t (1.2)

is a combination of the modulating waveform p(t) and a carrier frequency eω0t. In receive

mode, backscatter radar returns are sampled by the radar receiver for further analysis.

The sampled signal αs(t − 2r/c) is returned from a radar target at range r as depicted

in Figure 1.2.

Ionospheric plasma-density irregularities are typically observed with pulsed backscat-

ter radars that operate at twice the wavelength of ionospheric density fluctuations. Only

2

Figure 1.1: Backscatter Radar Layout

Figure 1.2: Range Time Diagram

very large power/aperture product radars, known as incoherent scatter radars (ISR) (e.g.

the Arecibo radar), can detect density fluctuations in a stable ionosphere. These radars

are powerful remote sensing tools to study the ionosphere in equilibrium. A simplified

3

model of the average received power (< Pr >) in an ISR experiment is described by

< Pr >= ηPt

AmaxδR

4πR2
σÑ, (1.3)

where η is the system calibration factor (that takes into account ohmic losses, etc), Pt is

transmitted power, σ is backscatter radar cross section of a free electron, Ñ is the average

electron density, R is the radar range, Amax is the effective area of the radar antenna,

and δR is the range resolution [10].

1.2 Radar Receivers

In general, a radar receiver performs the following tasks: 1) detect and isolate a desired

signal in the presence of noise, 2) translate the signal into a format compatible with the

system, and 3) digitize the signal for further processing.

In radar systems, the antenna is sensitive to the desired RF signals and largely de-

termines the signal-to-noise ratio (SNR) of the detected signal. After detection, filtering

and amplification isolate the desired signal from unwanted noise and the signal’s spectral

content is down-shifted to alleviate physical limitations in the processing chain. Combi-

nation of these processes define a receiver’s topology and many topologies exist [14, 23],

with each providing unique characterisitics. Of these, the superheterodyne architecture

is commonly used due to many advantages including: 1) amplifier and filter requirements

are lessened, 2) decoupling of the front- and back- ends, and 3) components are widely

available for standard intermediate frequencies (IF). This architecture uses one or more

stages of down-conversion to shift the signal down to a specified IF. In the analog domain,

4

the down-conversion process is a multiplication of two signals

y(t) = sLO(t)sm(t), where

sLO(t) = e−jωLOt

sm(t) = Am(t)ejωLOt+θm(t).

A graphical representation is shown in Figure 1.3. Combination of the superheterodyne

Figure 1.3: Signal Mixer

architecture and analog quadrature mixing for baseband conversion are key features of a

traditional radar receiver. In this configuration, quadrature down-conversion translates

the IF signal to baseband while preserving both amplitude and phase, which are required

for coherent sampling. An overview of the traditional radar architecture is illustrated in

Figure 1.4.

A modern form of radar receiver samples the IF signal allowing quadrature down-

conversion in the digital domain; these receivers are labeled digital receivers and the

general topology is depicted in Figure 1.5. Sampling IF signals enable systems to employ

a technique known as bandpass sampling [24] in addition to nyquist sampling used in

traditional receivers. The primary difference between the digital and traditional archi-

tectures is the position of the down-converting mixers; consequently, this detail defines

the two architectures. The digital receiver digitally down-converts an IF signal using a

Digital Down-Converter (DDC). The DDC [1] provides superior performance to conven-

5

Figure 1.4: Superheterodyne Analog Receiver with Quadrature mixing

Figure 1.5: Superheterodyne Digital Receiver with Quadrature mixers

tional analog mixers; eliminating nonlinear effects and mismatch errors in seen in analog

quadrature systems. The DDC creates a digital sinusiodal sequence for mixing using an

N-bit programmable numerically controlled oscillator (NCO) as shown in Figure 1.6 This

particular implementation is composed of the following components: 1) phase accumula-

tor and 2) sine/cosine lookup table (LUT). Phase accumulators enable precise frequency

6

Figure 1.6: Numerically Controlled Oscillator

tuning, typically with sub-hertz resolution. Accumulation of phase, via feedback, is best

described using a digital phase wheel as shown in Figure 1.7. The phase wheel contains

Figure 1.7: N-bit Digital Phase Wheel

a vector rotating counter-clockwise (CCW) at a rate fout determined by

fout = fclk

M

2N
, (1.4)

where M is the tuning word, N is the bit resolution, and fclk is the input clock rate.

As the vector rotates, a linear sum is produced at the output. A static phase offset

is programmed using a P − bit phase word. In order to reduce storage requirements,

bit reduction, or phase truncation is needed. For example, a 32-bit accumulator would

require a minimum storage of 230 entries; and, when combined with the precision of

the entry, total storage could exceed 1 GB. Notice that phase truncation, depending

7

on variables chosen in (1.4), can produce periodic phase errors [9, 22]. These periodic

errors concentrate power in the frequency spectrum and are known as frequency spurs.

Phase dithering is a technique commonly used to alleviate spurs by injecting random

noise into the truncated phase sequence. This technique spreads spectral energy over

the frequency band, resulting in an increase in the overall noise floor while reducing

spur levels. In the final step, a sinusiodal waveform is generated using a LUT. After the

down-conversion, data is generally filtered and resampled using a combination of DSP

techniques implemented in hardware.

1.3 Digital Signal Processing

In recent years digital signal processing has gained significant approval and widespread

acceptance in electronic design. Advances in semiconductor technology have made this

possible by reducing component size and increasing speed. These advances have allowed

digital technology to more accurately process signals that have been handled by analog

processing systems in the past. Advantages over analog processing units include: 1) soft-

ware reconfigurable hardware, 2) reduced cost and size, and 3) increased accuracy. The

following sections describe concepts needed for implementation and design of a modern

DAS.

1.3.1 Analog-to-Digital Conversion

A signal, by definition, is a detectable energy used to carry information which is encoded

through temporal or spatial variations. Observation of physical processes in nature are

converted, via sensors, into detectable signals via electrical current and a conductive

transmission medium. The signal’s information is revealed through signal processing

8

techniques. Since the advent of digital computers, signal processing and data storage

techniques typically operate in the digital domain; drastically improving performance

while decreasing storage requirements. Digital sampling is a process of transforming a

continuous signal into a discrete sequence; this process is achieved through an analog-to-

digital converter (ADC) chip. The operation performed by the ADC can be viewed as

a process consisting of three steps: 1) sampling, 2) quantization, and 3) encoding of the

signal. The first step of the conversion - sampling, performs the continuous to discrete

conversion. For example, a pure analog sinusoid is described by

sa(t) = A sin(2πFt + φ) ≡ A sin(Ωt + φ), (1.5)

where the sub-notation a denotes an analog signal, A is the amplitude, F is frequency in

hertz (Hz), Ω is angular velocity in radians per second (rad/s), and φ is the phase con-

stant. Discussion is limited to uniform sampling which are samples taken at equidistant

points with respect to time. The number of samples required to adequately represent a

continuous waveform is given by Nyquist’s theorem [20]

Fs ≥ 2B, (1.6)

where Fs is the sampling rate and B is the signal’s bandwidth. A discrete version of (1.5)

is given by

sa(nT) = A sin(ΩnT + φn), (1.7)

where n is the sample number and T is the sample period. Both forms are illustrated

in Figure 1.8. The sample period is inversely related to the sample frequency Fs = 1/T

with units of samples per second (SPS). The ratio of continuous frequency to sampled

9

s(t)

t

s[n]

n

Data Sampler

1/T

1/T

Figure 1.8: Digital Sampling

frequency, is

sa(nT) = A sin

(

2π
F

Fs

n + φn

)

≡ A sin(2πfn + φn) ≡ A sin(ωn + φn), (1.8)

where f is normalized frequency, and ω is angular velocity in samples per second (SPS).

A shortened notation

s[n] ≡ sa(nT) (1.9)

is adopted in most modern texts and will be used in this thesis to represent discrete

samples.

After sampling, each sample in the sequence contains a numerical representation of the

signal’s energy level at a single, instantaneous point in time. In practice, resolution of the

sampled sequence is rounded or truncated due to the limited number of bits in the ADC,

and this introduces an error into the sampled sequence known as quantization. Signal

quantization can be viewed as a non-invertible transformation of the original, sampled

10

sequence. Quantization is described by

xq[n] = Q

[

x[n]

]

, (1.10)

and the resulting error is

eq[n] = xq[n] − x[n]. (1.11)

A simple two-level rounding quantizer is illustrated in Figure 1.9. Assuming a rounding

Figure 1.9: 2 level quantization

quantizer, the maximum error is max(eq[n]) = ±∆/2, where ∆ is the step size of the

conversion and the Least Significant Bit (LSB) of the sample is

LSB ≡ ∆ =
Vrange

2b
, (1.12)

where b = bit resolution of the ADC. To analyze effects due to quantization noise, a

statistical approach is taken, and the following assumptions are made [13]:

1. The error is uniformly distributed over the range −∆
2
≤ e ≤ ∆

2

2. The error sequence is a stationary white noise sequence.

3. The error sequence is uncorrelated with the signal sequence.

11

4. The signal sequence is zero mean and stationary.

The probability density function (pdf) of the error signal is defined as

p(e) =

1
∆

−∆
2
≤ e ≤ ∆

2

0 elsewhere

(1.13)

and an illustration is provided in Figure 1.10 The mean-square noise power is

Figure 1.10: noise probability distribution

Pn ≡ σ2
e =

∫ ∆

2

−
∆

2

e2p(e)de =
1

∆

∫ ∆

2

−
∆

2

e2de =
∆2

12
. (1.14)

The Signal to Quantization Noise Ratio (SQNR) provides a comparison of signal power

vs. noise power due to quantization

SQNR = 10 log

(

Px

Pn

)

= 20log

(

σx

σe

)

; (1.15)

this equation reduces to

SQNR = 10.79 + 6.02b + 10 log(FFS), (1.16)

12

where FFS is the percentage of the full scale value of the input signal. A model commonly

used to simulate statistical quantization effects is illustrated in Figure 1.11. This model is

sufficient when the quantization level ∆ is small and the randomness of the signal spans

multiple levels between samples.

Figure 1.11: quantization error model

Data Encoding is the final step in the ADC process. Digital logic imposes limitations

on numerical representations that must be taken into account when designing DSP sys-

tems. Any real number can be represented digitally using a finite word length, placing

constraints on numerical precision and introducing nonlinearity to the system [5]. Nega-

tive number formatting must also be accounted for since digital logic representations use

only ’1’s and ’0’s. Fixed point representation of a number provides a general notation for

representing numbers using decimal notation. In this notation, any real number is given

by

r = ±
[

n
∑

j=0

bjβ
j +

p
∑

k=1

fk

βk

]

, (1.17)

where n represents the integer contribution, p represents the fractional portion, and β

is the base. Together, both n and p in (1.17) can be adjusted to provide the precision.

Digital numerical representations commonly use a base of 2, known as the binary number

system. A variety of numerical representations exist [5] but 2’s complement format is the

13

most commonly used

k = −bn2n +

n−1
∑

j=0

bj2
j, (1.18)

where bn is the sign bit

bn =

0 k ≥ 0;

1 k < 0.

(1.19)

Figure 1.12, using a 3-bit integer, depicts a graphical notation of the 2’s complement

format and emphasizes 2’s complement unique overflow behavior. Finally, the quantized,

Figure 1.12: 3-bit two’s complement integer representation

encoded sample is available at the output of the ADC for further processing.

1.3.2 Discrete Time Systems

Operations on discrete-time signals are characterized by discrete-time systems which

transform an input sequence into an output sequence

y[n] = τ

[

x[n]

]

, (1.20)

where τ [·] is the system transform operator. Block diagrams, as shown in Figure 1.13,

are useful when describing behavior of large systems. Algorithms used in transformations

14

Figure 1.13: Discrete Time System

are described graphically using a small set of operations shown in Figure 1.14. When

combined, these operations are capable of defining any system, regardless of complexity.

Discrete-time systems are classified according to properties they possess. A special class

Figure 1.14: Basic System Operations

of systems known as linear time-invariant systems (LTI) are commonly used to develop an

understanding of DSP theory. System linearity is defined by properties of homogeneity

and additivity.

1. Homogeneity: Scaling the input sequence will result in an equal scaling of the

output sequence.

y[t] ≡ τ

[

kx[n]

]

= kτ

[

x[n]

]

15

2. Additivity: An output response due to a summation of input sequences is equivalent

to a sum of the output response of each individual input sequence.

y[t] ≡ τ

[

x1[t] + x2[t]

]

= τ

[

x1[t]

]

+ τ

[

x2[t]

]

Time-invariance is used to describe a system with no dependence on time and is expressed

by

y[n − k] = τ

[

x[n − k]

]

. (1.21)

Comination of these two principles define the LTI system and thi system is completely

defined by its impulse response in an operation known as the convolution sum A

y[n] =

k=∞
∑

k=0

h[k]x[n − k]. (1.22)

Systems employing digital filtering techniques make use of (1.22) and two types of

digital filters exist:

1. Finite Impulse Response (FIR) Filter: This filter provides stability and linear phase

response due to its finite response h[n].

2. Infinite Impulse Response (IIR) Filter: These filters are used due to their efficient,

recursive structure.

Of the two filter types, focus is given to FIR filters and interested readers are directed to

[15, 17, 18, 13] for further reading.

16

1.3.3 Multirate Systems

Decimation, or down-sampling of a signal, is a process in which the sampling rate is

reduced by an integer factor D. To prevent aliasing, a filter is typically used to limit

bandwidth to the Nyquist rate of the decimated sampling rate. To illustrate this concept,

imagine a signal with a frequency response shown in Figure 1.15. If the original sample

Figure 1.15: Image bandwidth

rate were ωs, the decimated sample rate becomes ωD = ωs/D. To prevent aliasing at the

down-sampled rate, a filter with frequency response

HD(ω) =

1 −π
D

≤ ω ≤ π
D

0 elsewhere

(1.23)

is required. This filter is shown in Figure 1.16. After filtering, decimation reduces image

Figure 1.16: Decimation Image Filter

separation resulting from sample rate reduction and Figure 1.17 illustrates this concept.

17

A block diagram of this filter is shown in Figure 1.23. where v[n] is the convolution sum

Figure 1.17: Resulting spectrum from decimation

Figure 1.18: Decimation Block Diagram

of the input sequence with the unit sample response of the filter.

v[n] =
∞

∑

k=0

h[k]x[n − k]. (1.24)

The result in Equation (1.24) is decimated by D producing the output y[m], where m

represents the decimated samples

n = mD (1.25)

The resulting output is

y[m] =

∞
∑

k=0

h[k]x[mD − k]. (1.26)

One of the most commonly used applications of decimation is known as oversampling.

Referring back to (1.14), it was shown that quantization noise power was a constant quan-

18

tity. This power, assuming a band limited signal, is evenly distributed over a frequency

range of 0 ≤ Pn ≤ Fs/2. Based on this observation, the noise floor could be lowered by

sampling at a rate higher than that required by the Nyquist Theorem thus using a frac-

tion of the available bandwidth. Decimation is then used to lower the effective sampling

rate thus reducing both noise and lessening hardware requirements. An illustration of

this concept is presented in Figure 1.19. The oversampling ratio is defined by

Figure 1.19: Quantization noise power

OSR = 10 log

(

Fos

2B

)

(1.27)

where Fos is the oversampled rate and B is the bandwidth of the sampled signal. Including

the OSR to (1.16)

SQNR = 10.79 + 6.02b + 10 log(FFS) + OSR. (1.28)

Interpolation, or up-sampling of a signal by an integer I is accomplished by inserting

19

I − 1 zeros between each sample of the signal. If the original sample rate is Fs, the

interpolated rate becomes

FI = IFs. (1.29)

Using v[m] to represent the interpolated sequence, the result becomes

v[m] =

x

[

m
I

]

m = 0, + − I, + − 2I, ...

0 otherwise

(1.30)

Interpolation, as shown equation (1.30), effectively increases the bandwidth by a factor

of I. As a result, v[m] must be filtered by

HI [ω] =

1 −π
I

≤ ω ≤ π
I

0 otherwise

(1.31)

This filter is used to remove duplicate images from the original sampled sequence. This

concept is illustrated graphically in Figure 1.22. A block diagram of this operation

Figure 1.20: Sampled images

is shown in Figure 1.23. In many applications, a non-integer rate change is needed to

meet system requirements. An example of this is the conversion of an audio CD format

into a standard DAT format. This operation requires a rate change from the CD rate

20

Figure 1.21: Interpolation Image Filter

Figure 1.22: Resulting spectrum after interpolation

Figure 1.23: Interpolation Block Diagram

of 44.1kHz to the 48kHz rate of the DAT format. This can be accomplished through a

combination of interpolation and decimation. First the signal is interpolated by a factor

I, filtered, and then decimated by an integer factor D.

FR = Fs

I

D
. (1.32)

In this case the filter will remove frequencies above the final Nyquist rate thus supplying

the function required by both interpolation and decimation. This operation allows for any

combination, within hardware limits, of rational rate changes and commonly referred to

21

as a resampler. Using a combination of interpolation and decimation, a number of filter

techniques have been created to optimize performance in a DSP system. Application of

these filters will be discussed in chapter 2.

1.4 Software Analysis and Design

As the electronics industry and the resulting products advance in complexity, software

development is beginning to play a primary role in overall product design. The boundary

between electrical engineers and software engineers is diminishing rapidly [12]. In this

section an overview of object oriented programming (OOP) will be given along with a

review of relevant material from the Unified Modeling Language (UML). Together, these

tools provide a method for understanding and alleviating complexity in software design

as well as provide more robust software.

1.4.1 Object Oriented Programming

OOP was created out of a need to efficiently develop systems that were rapidly increasing

in both size and complexity. This section will provide a brief overview of the role OOP

plays in modern software design.

It is a known fact [11] that humans, in general, are only able to manage a maximum

of seven items simultaneously without error. Even small, well-understood systems can

present difficulties to the human mind. As a result, humans tend to reduce complexity

by partitioning a system into smaller, manageable pieces. In the case of top-down design,

systems are partioned by function; this is also known as procedural programming and

has been the most widely used method of design since the advent of modern comput-

ers. As system complexity increases, the top-down design methodology begins to expose

22

weakness in many areas such as: 1) readability, 2) maintainability, 3) adaptability, and

4) expandability The biggest problem with procedural programming, as seen by language

developers, is that responsibility is confined to one primary thread of control (main loop).

All of this responsibility in one place complicates coding and typically requires extensive

changes to accommodate small variations in design. Additionally, readability is reduced

thus making software maintainance more costly and time consuming. As an alternative,

researchers, in the 1970s, began to explore the idea of partioning a system through ob-

jects; and, by 1986, a number of object oriented languages were available. As seen from

the object oriented (OO) perspective, a system is composed of a collection of objects,

each with a well-defined behavior, that interact and collectively define the system. Par-

tioning a system through object decomposition results in many important characteristics.

Object re-use is made possible through inheritance, which is the ability for an object to

assume another object’s characteristics while reserving the ability to modify/add more

as needed. Encapsulation, the ability to hide complexity from the user, is possible by

exposing the object’s interface while hiding the inner complexity. In addition, the system

becomes easily adaptable/expandable since changes are made to the required object. The

abililty to understand and maintain the system is lessened due to well-defined boundaries

between objects. Of the many languages available for OOP, C++, due to widespread use

and support for graphical user interfaces (GUI), was chosen for this project. Interested

readers are referred to [4, 19] for complete coverage of OO analysis and design.

1.4.2 Unified Modeling Language

The UML is a graphical modeling system created to aid in the design of complex Object

Oriented based software systems. One of the most important uses of this modeling

23

language is its ability to bridge the gap between the software user and the software

developer. Strong communication between the system user and the developer is the most

important concept determining the success or failure of a design. The UML fills this gap

by abstracting system complexity into a set of interfaces and interactions, which can be

reasonably understood with minimal effort. This benefits not only the user of a complex

software system but also aids in the design of such systems by reducing complex object

interactions into a visual representation. The UML was released to the public in 1997 by

the Object Management Group (OMG) and has seen many revisions over time. Use of

the UML, as it relates to this thesis, is limited to a small subset of diagrams that were

found most suitable for this design. The following diagrams will be used:

1. Use Case: Illustrate interactions between the system’s users and the system itself.

This is used at the beginning of a design to gather all user interactions with the

system; and, consequently build a list of system requirements.

2. Class Diagram: Used to illustrate interactions between a collection of objects in the

system. They are also used to provide a list of properties and methods available to

each class.

3. Activity Diagram: Provide insight into the operation of a subset of the system

or an overview of the entire system. These diagrams resemble flow charts used

in procedural modeling but provide methods for illustrating concurrent activity

commonly seen in OO systems.

4. Composite Structure: Depict a broad view of a class by displaying the class inter-

face along with a description of components functioning inside the class. This is

accomplished by displaying the class’s internal functions using smaller blocks.

24

Chapter 2

System Analysis and Design

Implementation of any design begins with a complete definition of the problem followed

by a method of action to achieve the desired solution. This design used an object ori-

ented methodology and was chosen based on the ability of OO design to efficiently man-

age complexity and make the system resilient to change. Within the OO paradigm, an

overwhelming number of techniques and approaches exist and more than one were im-

plemented in this design. This section will discuss aspects of the system from a design

perspective. Both hardware and software discussions are combined to better communi-

cate their dependence. To begin, a precise definition of the problem domain, with the

help of domain experts, is the first stage of design known as requirements analysis[6]. The

sections that follow will discuss the techniques used to analyze, model, and implement

the design. Detailed discussion of both hardware and software are combined to better

communicate their interdependence.

25

2.1 Requirements Analysis

Definition of the system’s capabilities and features are best defined by users (domain

experts) of the system. A preliminary list of requirements were created as a first step in

the design process:

1. Users are typically visiting scientists and will receive limited assistance from staff.

2. Users need the ability to configure the system to meet their own specifications.

3. System configuration should be stored for later re-use.

4. Multiple configurations, cycled at predetermined intervals, are sometimes necessary

for a single experiment.

5. The system will use the Linux Operating System.

6. Some experiments require large bandwidths and high storage rates.

7. Minimal real-time processing and plotting tools are necessary to ensure proper setup

and equipment function.

8. Telescope position and sytem time are broadcast (multicast) on the network and

must be processed and stored.

9. A standard file format will be required for data storage and retrieval.

10. Software should be able to accommodate newer hardware revisions with minimal

effort.

11. Documentation must be written to assist both developers and users.

26

The list served as a framework for the design and each item was organized by function.

Primary operations were identified and further refinement produced smaller, well-defined

supporting. A Use Case Diagram, shown in Figure 2.1, depicts the system visually;

diplaying system functionality and roles of the differnet users. From the analysis, 4 pri-

Figure 2.1: Use Case Analysis

mary and 4 supporting operations were discovered; and, having well-defined boundaries,

partitioned the system into 4 primary programs of operation:

1. System Configuration Program

2. Data Collection Program

3. Real-Time plotting Program

4. Data Formatting Routines

These 4 programs fully define the system’s operation from a software perspective. In this

design, engineers at AO had previously selected all hardware; therefore, integration of

27

software with existing hardware became the focus. A list of all interacting hardware is

given as follows:

1. Digital Receiver,

2. General Purpose Computer,

3. High speed, large capacity data storage, and

4. Radar pulse controller.

Digital Receiver

The Echotek-GC214-PCI (GC214) Digital Receiver was chosen for the system because

of its ability to provide many modes of operation; accommodating a large variety of

possible experiments at the observatory. The GC214 consists of 2 analog inputs, each

sampled by an AD6645 14-bit ADC. A simplified diagram of the GC214 is depicted in

Figure 2.2. In the sections that follow, the GC214’s capabilities and functionality are

AD6645

AD6645

Channel 1

Channel 2

Sample Clock Trigger

GC4016
Output

Formatter PCI Output

Figure 2.2: Echotek-GC214PCI Diagram

described in detail, with each section introducing a component of hardware followed by its

accompanying software. The intention of this approach is to maintain coherence between

software and hardware.

28

Figure 2.3: GC214 Class Diagram

2.2 System Configuration

The GC214 digital receiver is a versatile device, capable of multiple modes of operation.

Taking full advantage of these capabilities requires a full featured software interface;

providing complete control over parameters while maintaining simplicity. Encapsulation

[4] is a commonly used technique to hide complexity; exposing only the necessary features

of a system to its user. In this design, a graphical user interface (GUI) was used to

provide a clean, simple interface; again, exposing only parameters necessary and familiar

to the user while hiding the bulk of complexity. Configuration software for the GC214 is

responsible for the following tasks:

1. Provide a simple, easy-to-use graphical interface with commonly used layout tech-

niques.

2. Provide rule checking to alert the user and prevent improper settings.

3. Record the user’s minimal requirements and compute all remaining variables re-

quired to configure the hardware.

29

Additionally, a key component of this design was to produce a system resilient to change;

meaning that hardware upgrades would require minimal alterations to software. A num-

ber of components are needed to successfully perform all tasks required of a Digital

Receiver. A break-down of the GC214 is shown in Figure 2.3 and displays components

directly involved with system configuration. The GC4016 Digital Down Converter in-

tegrated circuit (IC) [21] is the primary component on the GC214. The GC4016 is

an Application Specific Integrated Circuit (ASIC) used to perform all data processing.

The GC4016 consists of 4 independent processing channels that perform signal down-

conversion, filtering, and data rate adjustments. Each of the 4 channels can operate

independently or can be combined to increase channel band-width. The GC4016, by

design, contains modules with well defined boundaries making it suitable for object de-

composition. Each of the modules, as stated in the manual [21], were used as objects in

software:

1. Input Format

2. ZeroPadding

3. Numerically Controlled Oscillator (NCO)

4. Cascaded Integrated Comb Filter (CIC)

5. Coarse Gain

6. 21 Tap Finite Impulse Response Filter I (CFIR)

7. 63 Tap Finite Impulse Response Filter II (PFIR)

8. Fine Gain

30

ZeroPad CIC
Coarse

Gain
CFIR PFIR

Fine

Gain

14-bit

Data Input

24-bit

Data Output

Figure 2.4: GC4016 Channel

9. Resampler

In the GC4016 datasheet [21], both Input Format and Resampler modules are mem-

bers of the channel. Further analysis revealed that the modules responsibilities were

common to all channels, therefore these modules were separated from the channel. This

separation produced classes that were more cohesive and loosely coupled. The Channel

diagram in Figure 2.4 illustrates this concept. Analysis of commonalities and variances []

among the channel’s modules revealed a key abstraction. Each module has the following

common attributes: 1) Input rate, 2) Output rate, 3) Input gain, and 4) Output gain.

These common traits were used to create an interface class named IOBlock as shown in

Figure 2.5. In addition, each module within the channel is a part of a larger, cascaded

Figure 2.5: IOBlock Interface and IOChannel Class Diagrams

system. This type of system is characterized by a succession of stages where the output of

each stage provides the input for the next. This relationship shows a dependence among

interconnected modules. A change to one module’s parameters requires an update of all

31

modules that follow. This behavior was implemented by creating an abstract class named

IOChannel which inherits the IOBlock interface. Two methods were created to emulate

the cascading system as shown in Figure 2.5. Each object must register the next object

in the system via a base class pointer. Changes to a module invoke its Update member

which in turn calls its registered object’s Update member. Each subsequent module is

synchronized in this manner. Preceding stages are unaffected by this operation. Declar-

ing the Update member virtual allows derived classes to implement custom behavior.

Each module in the GC4016 channel inherits the IOChannel class.

ZeroPad Module

The first stage in the GC4016’s channel is the zero pad function. Zero padding is a

technique used to match the input data rate and the sample clock rate when the data

rate operates at a lower rate. Zeros are inserted between each input sample. From the

sample clock’s perspective, the input data rate is increased. Due to the apparent rate

increase, the user is able to choose a lower input rate. To ensure proper operation, the

input rate must meet specifications given by

InputRate =
fclk

nzero + 1
, (2.1)

where nzero is the number of zeros to insert. Valid values are integers ranging from 0

to 15. Input rates as low as fclk/16 are possible. Time Domain Multiplexing (TDM) is

another application requiring zero padding. In this application multiple channels of data

are serialized into a single data stream, separated by time. In this system, nzero is set to

the number of data channels. The zero pad function uses programmable synchronization

and, in the case of TDM, is required to sample the desired data channel. The zero pad

32

function uses a programmable sync input to synchronize sampling in this stage. The

output gain of the zero pad function is represented by

Gain =
1

nzero + 1
. (2.2)

Software implementation for the zero pad function began with a description of the hard-

ware interface as illustrated in Figure (2.6). As the first stage in the system, input gain

is constant. The zero pad function has no control over the data rate. This is illustrated

with a straight bar connection from input rate to output rate. The ZeroPadding method

sets the number of zeros inserted into the data stream. The ZeroPadSync method selects

the proper source for synchronizing collected samples.

ZeroPadSync

ZeroPadding

InputRate

Output Gain

Output Rate

Sync

Gain1.00

(a) Composite Diagram (b) Class Diagram

Figure 2.6: ZeroPad Diagrams

CIC Module

The Cascade Integrator Comb filter [7, 8] is an efficient implementation of cascaded FIR

filters combined with, depending on the design, either decimation or interpolation. The

CIC is commonly used in multirate systems where large rate changes are desired. The

CIC has the following benefits over the standard FIR filter:

1. No multiplications are required.

33

2. No storage required for filter coefficients.

The FIR transfer function has the form

H(z) =

K−1
∑

k=0

h[k]z−k (2.3)

where h is the impulse response kernel, k is the delay, and K is the number of coefficients.

Noting that (2.3) is a finite geometric series, the basic structure of a single stage CIC is

realized from the latter part of (2.4).

SK =
K−1
∑

k=0

ark ≡ a(1 − rK)

1 − r
(2.4)

Setting coefficients to unity and letting r = z−1, the CIC transfer function becomes

H(z) =

[

(1 − z−RM)

1 − z−1

]N

(2.5)

where R is the decimation factor, M is differential delay, and N is the number of cascaded

stages. The CIC implementation uses a combination of integrators and comb stages,

combined with a rate changing mechanism such as interpolation or decimation. A single

stage integrator is used to represent the pole of the transfer function in (2.5). The

realization of this stage is illustrated in Figure 2.6 and the is described by

y[n] = x[n] + y[n − 1]. (2.6)

The transfer function is

HI(z) =
1

1 − z−1
. (2.7)

34

A multi-delay comb filter is used to represent the zeros of the transfer function in 2.5.

x(n) y(n)

Z
−1

Figure 2.7: Single Stage Discrete Integrator

Figure 2.8 illustrates the characteristics of the filter. The comb filter’s response is

y[n] = x[n] − x[n − N] where N = differential delay (2.8)

The transfer function is described by

HC(z) = 1 − z−N (2.9)

Multirate systems generally require large rate changes which increase coefficient storage

−1

Z
−N

x(n) y(n)

Figure 2.8: Single Stage Discrete Differentiator

in the comb stages. Coefficient storage can become excessive when cascading multiple

stages. This large delay is eliminated by using decimation/interpolation. The CIC limits

the comb filter’s delay to 1 or 2, which is known as the differential delay (M). All other

delay is introduced through standard multirate techniques. An illustration of the GC214’s

Decimation CIC filter is seen in Figure 2.9 CIC gain is determined by

35

R

Z
−1

Z
−1

x(n) y(n)

−1

Z
−M

−1

Z
−M

Figure 2.9: MultiStage Decimating CIC Filter

Gain = RMN . (2.10)

The GC214 uses a unity differential gain resulting in removal of M from 2.10.Gain com-

pensation is necessary to prevent data overflow. The GC214’s gain compensation equation

is

Comp = 2Shift+Scale+6BigScale−62 (2.11)

where variable ranges are:

1. 0 ≤ *Shift ≤ 7

2. 0 ≤ Scale ≤ 5

3. 0 ≤ BigScale ≤ 7

* range from 4-7 when using 20 bit rounding. The overall gain equation of the CIC is

CIC Gain = RN2Shift+Scale+6BigScale−62 (2.12)

Rewriting (2.12) and accounting for ZeroPad gain, proper gain compensation can be

realized by

Shift + Scale + BigScale ≤ 62 − N log2(R) + log2(nzero + 1). (2.13)

36

Violation of this rule will result in undetected data overflow and an automated algorithm

was implemented to prevent this occurrence. The CIC module is derived from IOChan-

nel and is responsible for the gain, decimation, and multichannel options that will be

discussed in a later section. The CIC module class diagram is illustrated in Figure 2.10.

The CIC module interface is shown in Figure 2.10. Gain synchronization is provided via

InputGain

Decimation

Input Rate

Output Gain

Output Rate

1/Decimation

RoundNormalize

Set20BitRoundMode

IOnly

QOnly

Multi

Channel

NegCtl

SplitIQ

Sync

GainSync

(a) Composite Diagram (b) Class Diagram

Figure 2.10: CIC Diagrams

the GainSync member. Output data can be rounded to 16 or 20 bits, with decimation

greater than 3104 limited to 16-bit rounding. A gain normalization algorithm is provided

to optimize variables for unity gain, and prevent data clipping due to improper settings.

The CIC’s Normalize member optimizes: 1) shift, 2) scale, 3) and bigScale variables.

The code segment in 2.1 illustrates the algorithm.

void CIC : : Normalize (){

s h i f t = 7 ; b igSca l e = 0 ; s c a l e = 5 ;

f loat r ightVa lue = 62 .0 f − (5 . 0 f ∗ l o g (static cast<f loat >(dec imation)) +
log (InputGain ())) / l og (2 . 0 f) ;

f loat l e f tVa lu e = s c a l e + s h i f t + 6 .0 f ∗ b igSca l e ;

37

while ((l e f tVa lu e < r ightVa lue) && (b igSca l e != 7 .0 f)){
++bigSca l e ; l e f tVa lu e += 6 .0 f ;

}

while ((l e f tVa lu e > r ightVa lue) && (s h i f t != 4 .0 f)){
−−s h i f t ; −−l e f tVa lu e ;

}

while ((l e f tVa lu e > r ightVa lue) && (s c a l e != 0 .0 f)){
−−s c a l e ; −−l e f tVa lu e ;

}

while ((l e f tVa lu e > r ightVa lue) && (s h i f t != 0 .0 f) && ! mix20b){
−−s h i f t ; −−l e f tVa lu e ;

}
}

Listing 2.1: CIC Normalize Algorithm

Coarse Gain Module

Although the CIC filter produces an efficient decimating filter, its gain as a function of

frequency is undesirable and requires compensation. The Coarse Gain module is used to

boost gain up to 42 dB in 6 dB steps. The CIC filter’s overall gain is dependent on the

value of decimation chosen. As discussed in the previous section, the CIC filter’s gain

must be unity or less in order to prevent the clipping of data. The Coarse Gain class,

being a member of the GC4016’s processing chain, inherits the IOChannel interface. Both

interface and class diagram are illustrated in 2.14. The AutoGain method was added for

automatic gain compensation and is optimized for unity gain. Input data width is 20 bits

and output data is rounded to 24 bits. The input rate is unaffected.

FIR module

Multirate filtering techniques reduce computation costs by implementing multiple cascad-

ing filters to produce the desired response. Individually, a single stage can not provide the

38

CoarseGain

AutoGain

InputGain

InputRate

OutputGain

OutputRate

Auto Adjust

Gain

Gain Selector

(a) Composite Diagram (b) Class Diagram

Figure 2.11: Coarse Gain Diagrams

desired response due to the limited number of coefficients used to represent the transfer

function. Instead, each stage provides a relaxed transition band and followed by deci-

mation which effectively lowers the filter’s data rate, thus providing an a good response

without a large number of filter coefficients. A typical FIR response is

H [n] =

N
∑

k=0

h[n]x[n − k] (2.14)

where n is the sample number, k is the delay, and N is the length of the filter.

CreateFilter

LoadDefaultFilter

CustomFilter

Output Gain

Output Rate

Filter

Select

Filter

Taps

Sum

Copy

InitFilters

InputRate

InputGain

Update

PrintTaps

Normalize

(a) Composite Diagram (b) Class Diagram

Figure 2.12: FIR Diagrams

39

CFIR Module

The CFIR module is 31 coefficient decimate by 2 FIR filter. The CFIR filter is typically

used to provide droop compensation for the CIC’s imperfect passband response. It can

also be used to complement the PFIR’s response if needed. An illustration of the filter

is shown in Figure ().

(a) Class Diagram

Figure 2.13: CFIR Diagrams

PFIR Module

The PFIR module is a 63 coefficent filter that decimates by 2 in both Narrowband and

Wideband modes. UltraWideband mode cancels decimation in this filter by applying a

single sample phase delay between even and odd samples in the processing channels. This

filter is typically used to provide a customized response.

(a) Class Diagram

Figure 2.14: PFIR Diagrams

40

Fine Gain Module

The fine gain module is capable of precise gain adjustments using a programmable variable

Fine in

Gf =
Fine

1024
, (2.15)

where Fine is a 14-bit integer; providing a maximum gain of 24dB. Figure 2.15 depicts

the FineGain module. The purpose of the FineGain module in this system is to fine-tune

CoarseGain

AutoGain

InputGain

InputRate

OutputGain

OutputRate

Auto Adjust

Gain

Gain Selector

(a) Composite Diagram (b) Class Diagram

Figure 2.15: Fine Gain Diagrams

the gain with the goal of achieving unity gain in the system.

Resampler Module

Resampling is a process of increasing or decreasing the system’s sample rate to meet

sampling requirements of the interfacing system. In this system, the interfacing hardware

is the GPC and the hardware is capable of rates beyond the GC214; therefore, no specific

need for resampling exists. In order to maintain resilience and allow other observatories

to use this software, a complete resampler module was created. In addition to resampling,

the resampler module also provides an additional 512 coefficient FIR filter that can be

partitioned in a variety of ways or used as a single filter. Gain is also provided in the

41

resampler module but should only be used to make coarse adjustments. Figure 2.16

illustrates the Resampler Composite and Class diagrams.

CH_A

CH_B

CH_C

CH_D

Channel

Map

Resampler

Ratio

Resampler

Filter
Channel

Combine
Gain

CH_A

CH_B

CH_C

CH_D

ChannelMap ResamplerRatio AddTo FinalShiftFilterMap

NumFiltersNumChannels

(a) Composite Diagram

(b) Class Diagram

Figure 2.16: Resampler Diagrams

42

2.2.1 Configuration Graphical Interface

All interaction with system configuration takes place through a custom designed GUI

using Trolltech’s QT libraries []. Basic variables are entered through the system’s main

window shown in Figure 2.17. Automated rule checking is provided and corrections

Figure 2.17: Main Configuration Window

are made when the user chooses and incorrect or invalid setting. A status window is

provided to display necessary information as the configuration is taking place. Based on

the bandwidth and the number of channels required, additional windows are available

for programming. These additional windows allow the user to configure each channel

individually to meet requirements; this includes the channel’s output rate, gain, and

43

filtering as illustrated in Figure 2.18.

Figure 2.18: Channel Configuration Window

When the user has completed configuration, three files are saved to disk: 1) ASCII

based configuration file 2) file containing binary data for card and device driver configu-

ration 3) Primary header data used in data acquisition data formatting The configuration

file is used by the configuration program to reload/restore a previous configuration. The

other two files are used by other programs in the system.

44

2.3 Data Acquisition

2.3.1 Hardware / Software Interface

Design and implementation of modern DAS present many inherent challenges; of these,

the largest lies in the ability to efficiently handle the high rate of data into the system.

PC peripherals provide a variety of paths for data transfer. Currently, the PCI bus and

its derivatives offer the highest performance; consequently, the Echotek-GC214 digital

receiver uses a 32-bit PCI bus with a clock rate of 33MHz. This standard provides up

to 133 MB/s continuous transfer rates with the OS overhead reducing actual rates to

approximately 75% of this maximum ??. The host side (PC) of the system, the device

driver is responsible for all transactions; including data transfers. A custom device driver

was created to maximize data transfer to the PC. This was achieved using Direct Memory

Access (DMA) transfers. More specifically, chaining DMA transfers were implemented

via a DMA descriptor table. DMA operates by directly transferring data from hardware

to memory with limited intervention from the processor. In some applications, even larger

blocks can be transferred by applying DMA descriptor tables. The Echotek-GC214 uses

the PLX9080 PCI interface integrated circuit for communication. The PLX9080 descrip-

tor table is illustrated in Figure 2.19. Large numbers of descriptors can be used and are

connected by the descriptor’s next pointer. In this implementation, each table contains

1 second of data, with a data block size of 4 kB. The chosen block size allows alignment

with the OS page size, which is also 4 kB. Alignment on page boundaries provides many

benefits that will be discussed shortly. At the end of each table of descriptors, a special

bit is set in the descriptor’s control register; triggering an interrupt to alert the user of

incoming data. In addition, 4 small FIFOs, one for each channel, are located on the

digital receiver; providing minimal time for DMA to operate. Timing requirements for

45

Figure 2.19: PLX9080 DMA Descriptor Layout

such systems are depicted in figure 2.20. Each of the FIFOs depicted in Figure 2.20

Figure 2.20: Echotek-GC214 FIFO Layout

are 64x32 kB in length, with each channel capable of transfer rates up to 9.54 MSPS.

To prevent data loss, maximum sustainable rates of 38.15 MSPS must be achieved. In

addition to data transfer, many other tasks are needed for full operation: 1) Partial se-

lection data for storage. 2) System verification using real-time data displays. 3) Header

information is to stored data. To fulfill the complete requirements of the system, a com-

bination of techniques were employed: 1) dual-layer buffer system utilizing both kernel

46

and user levels of the OS 2) the producer/consumer threading model 3) shared memory

via the tmpfs filesystem Dual-layer buffers are widely used in audio application software

and provide multiple buffers to mask system delays which would normally produce unac-

ceptable sound performance. In this particular system, a lower level set of buffers, called

DMA buffers, are allocated by the device driver; making these buffers kernel allocated

buffers. In many Operating Systems, two levels of priority are used when dealing with

interactions:

1. Kernel mode - this level is reserved for low level system management required by

the operating system. Device drivers are run in this mode; preventing the common

user from potentially damaging devices through direct hardware control.

2. User mode - this is the mode used by system users and application programmers.

The user interacts, as needed, with kernel mode through the use of well defined

system calls provided by the operating system.

The Echotek-GC214 device driver manages the kernel allocated DMA buffers and offers

user access using the mmap system call. The mmap function, known as memory mapping,

allows the user to map kernel allocated memory into user space using standard C language

file I/O functions. In order to minimize memory management at the kernel level, provide

real-time plotting capabilities, and provide flexibility to the user’s application software, a

secondary buffer system was allocated in user space. Additionally, this system utilizes the

Linux OS’s shared memory capabilities. Shared memory, as the name implies, allows a

user’s process (running program) to include the shared memory’s address space in its own

space; consequently, the user’s process can treat the memory as its own. A specialized

filesystem [16] called the tmpfs filesystem was used to provide a clean interface to shared

memory. This filesystem allows the user to create files in PC RAM using standard

47

function calls. Memory management is handled through a simple file I/O interface.

Figure 2.21 depicts memory use and layout. Efficient operation and synchronization is

Figure 2.21: Memory Buffer Layout

accomplished with the producer/consumer (P/C) threading model [3]. The P/C model

requires two threads: the producer thread handles data writes to the buffers, and the

consumer thread manages data reads as shown in Figure ??. Synchronization is controlled

through a shared variable that tracks dirty buffers (buffers containing pending data). In

this model, the consumer thread starts the sequence, requesting data from the first buffer.

If data is not available, the consumer thread is put to sleep. Then, the producer begins

filling buffers at a continuous rate; waking the consumer thread upon completion of a

buffer. This operation continues indefinitely using a predetermined number of buffers.

Non-real-time operating systems can impose unpredictable latencies [2]; violating real-

time operation. Applying the P/C model, latencies can be masked through buffering;

bypassing the need for a real-time operating system. Additionally, use of this model,

combined with shared memory regions, allow for multiple levels of real-time processing

48

to occur simultaneously. This approach preserves storage device bandwidth which is

critical for high speed, real-time data writing. This provides a major advantage over

older systems in which the storage device spent a large amount time seeking to satisfy

system reads and writes; further limiting bandwidth. Radar data collection begins

Figure 2.22: Producer Consumer Activity Diagram

when a trigger signal is applied to the external gate of the digital receiver. Next, the

user application requests data from the digital receiver, via the driver’s interface. When

data is available, the user application selects a segment of data and copies it into a

secondary, user allocated buffer system. This secondary system allows data sharing among

multiple processes by utilizing the POSIX shared memory library and the tmpfs [16] file

system. Tmpfs transparently allows large regions of PC RAM to be used as a standard

storage device. This filesystem is, by default, dynamically sizable through the use of swap

space. For high speed operation, a fixed size tmpfs is required; preventing interaction

with swap space which drastically degrades performance. The POSIX shared memory

library uses the tmpfs filesystem to allocate regions of memory included in the requesting

process’s own address space; providing data sharing among processes. All experiments

49

Figure 2.23: Consumer Activity Diagram

Figure 2.24: Producer Activity Diagram

at the observatory select portions of data, called windows, from the possible selection of

data. Currently, this feature is handled in software, requiring no additional computation

but increases data rates across the PCI bus. In the configuration program discussed in

Chapter xxx, three windows: 1) TX window, 2) Data window, and 3) the Noise window,

were chosen from the total number of samples collected in one IPP. Data selection takes

place when data is transferred from the DMA buffers into the Shared buffers. The

50

Figure 2.25: Run Time GUI

Run-Time graphical interface is depicted in 2.25 and provides a simple, direct interface

for loading preconfigured modes into memory. The system indicates system status and

incoming system data rates. Time and date are also displayed along with the number of

modes loaded into memory. The center frame will eventually be used to display details

of the current running mode e.g. experiment description, bandwidth, number of channels

used, etc.. .

51

2.4 Real-Time Data Display

One drawback of an IF digital sampling system is the difficulty that arises when trying

to verify data as it passes through the processing chain. The GC214 passes data via

the PCI bus into the PC’s RAM. One benefit of using shared memory is the ability to

access data real-time using a separate process. Operation of the real-time data display

uses this principle and is capable of displaying raw voltage in the time-domain as well as

data in the frequency domain. Since data is stored in one-second buffers, the data display

updates at a rate of 1 Hz. To compute FFT’s efficiently, the Fastest Fourier Transform

in the West (FFTW) was used to compute an adjustable N-point complex transform.

2.5 Data Format and Storage

Data storage requires a well defined format enabling many users to process data using

a variety of languages. Scientific data commonly uses a format including headers, or

tags used to describe a blocks of data. A number of formats are in use today; the most

common of these being NASA’s FITS and the NCSA’s HDF formats. After a careful

study of the FITS format, it was decided that, in order to achieve required efficiency

and speed, a custom format would be needed. This custom format is labeled the Simple

Header System (SHS) due to its quick, efficient implementation. Since the design was

custom, an important goal was to provide a balance between readability and efficiency.

In this section a description of the system will be given along with the C++ library

resulting from the initial development.

52

File Name

Simple Header files (SHS), are defined by the .shs extension, and a data set consists of

multiple files sharing a common basename and an increasing index number starting from

000. A sample data set is depicted in ??.

1 testFile_000.shs

2 testFile_001.shs

3 testFile_002.shs

4 testFile_003.shs

5 testFile_004.shs

6 testFile_005.shs

7 testFile_006.shs

8 testFile_007.shs

Keyword

The purpose of the SHS structure is to fully describe all aspects of the data so that,

upon retrieval, all variables required for processing are available. Variables are described

using keywords. A keyword consists of four parts: (1) Name (2) Value (3) Type, and

(4) Comment. All keywords and delimiters in the SHS file are 96 bytes in length and are

in ASCII format. This provides negligable overhead and serves two important purposes:

1. The primary and first data header (described below) can be examined using com-

mand line tools (more,less,etc...). This provides a quick method for verification

without the need for specialized software.

2. Using ASCII for header information removes byte ordering dependence. This sim-

plifies header parsing when working with multiple platforms.

53

File Structure

Each SHS file consists of 3 primary structures:

1. Primary Header

This header is located at the beginning of each file in a data set. The information

is static and both fixed and custom keywords are present.

2. Data Header

The data header precedes every data table in a file and describes dynamic infor-

mation relevant to the table that follows. Multiple data tables exist in a single

file.

3. Data Table

Data Tables are blocks of data with a size defined by the user. Block size usually

corresponds to a particular boundary preferrable for processing. Tables can be

formatted in either ASCII or binary.

A visual summary is shown in Figure 2.26 and a complete description is given in the SHS

Headers section of this document. Each SHS file begins with a title, version, and author

section; followed by the license. This section is referred to as the file ID and provides a

method for verifying the file type and version of software used to create the file. Figure

2.27 illustrates the current file ID.

SHS Headers

SHS files contain two types of headers: 1) primary header and 2) data header. Together,

these headers fully describe both static and dynamic information related to the stored

data. Each header uses keywords to describe data and each follow a structered format

54

Figure 2.26: SHS Layout

Simple Header System version: 0.01 author: Ryan Seal <rseal@naic.edu>
Copyright (C) 2005 GNU General Public License

Figure 2.27: SHS File ID

as shown in Figure 2.28: There are two types of keywords used in SHS files. Figure

Figure 2.28: Keyword format

55

2.28 represents the most commonly used and the only custom configurable keyword. The

other type of keyword belongs to a small part of the primary header and will be discussed

in the following section.

Primary Header Format

The purpose of the Primary Header is to allow the user to document general information

about the setup and configuration of the data set. This includes any information that will

remain static throughout the data set; therefore, the header can be created before data

acquisition and the header will remain consistent throughout the data set. In addition, a

number of fixed keywords exist to describe internals of the file’s structure. These keywords

differ slightly from the previously mentioned standard. Specifically, they contain only a

name and value but maintain the necessary 96-byte boundary. This format is shown

below in Figure 2.29. All primary headers begin with four fixed keywords followed by

Figure 2.29: Keyword format

user-defined keywords as illustrated in the sample primary header below. Note that two

of these fixed keywords are defined by the user. The remaining two describe the header

type and the byte ordering of the system used to create the file.

56

1 Simple Header System version: 0.02 author: Ryan Seal <rseal@naic.edu>

2 Copyright (C) 2005 GNU General Public License

3

4 HEADER: = PRIMARY

5 TITLE: = Echotek Data Col

6 DESCRIPTION: = Echotek GC214-PC

7 BYTEORDER: = LITTLE_ENDIAN

8 KEYWORDS:

9 [

10 FILENAME = testFile string // file name

11 DATE = 04/13/2006 string // config create date

12 TIME = 10:31:22 AST string // creation time

13 0RIGIN = Arecibo Observat string // origin of data

14 OBSERVER = RSEAL string // observer

15 OBJECT = Nothing string // what is being observed

16 TELESCOPE = NA string // telescope used

17 INSTRUMENT = NA string // data collecting instrument

18 BWMODE = Narrow string // bandwidth mode

19 CHUSED = 23 string // number of channels used

20 COLMODE = Burst string // collection mode

21 GATESRC = SIA string // trigger source

22 GATEPLR = RISING string // trigger polarity

23 BURSTCOUNTER = 17800 string // burst counter

24 DELAYCOUNT = 0 string // delay counter

25 SYNC = SIA-COHERENT string // synchronization

26 DATAFORMAT = 16-bit complex string // data format

27 CLOCKRATE = 80 string // clock frequency MHz

28 DECIMATION = 20 string // total system decimation

29 OUTPUTRATE = 4 string // system output rate

30 NCO1 = 24.5 double // NCO1 frequency MHz

31 NCO2 = 35.8 double // NCO2 frequency MHz

32 NCO3 = 0 int // NCO3 frequency MHz

33 NCO4 = 0 int // NCO4 frequency MHz

34 RESAMPLER = OFF string // resampler

35 IPP = 10 int // IPP in msec

36]

A variable number of custom keywords can exist. Special delimiters are used to search

and determine this number. The custom keyword section begins with a ’KEYWORDS:’

57

label and an opening ’[’ brace. Following the standard, the label and delimiter occupy

192 (2*96) bytes. The opening brace is followed by a number of keywords, each 96-bytes

in length, and ends with a closing brace ’]’; also 96-bytes. All 96-byte entities end with

a newline character ’/n’, which occupies the 96th byte. The addition of the newline

character allows the user to read a line of data (token) using predefined functions found

in most common programming languages. Combining the braces with the fixed keyword

size, the software can be designed so that keyword additions will be transparent.

2.5.1 Data Header Format

Data is written to the SHS file using a size determined by the user. Typically, this size is

chosen to partition the data in a way that will enhance later processing. For example, if

the user performs integrations with a resolution of 1 second; a one second block of data

would be preferrable. Data headers are used to describe these blocks of data. Again,

fixed keywords are used to describe information about the structure of the data; but

these keywords follow the standard format described earlier. Looking at the figure below,

all keywords preceding the identifier ’KEYWORDS:’ represent fixed keywords; which are

required internally by the system. It should be noted that data can be stored in either

ASCII or Binary tables. Custom keywords follow the fixed keywords in the exact manner

as the primary header. A complete sample header is illustrated in Listing below:

1

2 HEADER: = Binary string // data storage format

3 TABLENUM: = 0 string // table number in current file

4 TABLESIZE: = 6444000 string // table size with units of DATATYPE

5 DATAWIDTH: = 2 string // number of bytes in DATATYPE

6 DATATYPE: = short string // data type

7 NUMDIMS: = 2 string // number of dimensions

58

8 Dim0: = 32220 int // Dimension Number 0

9 Dim1: = 200 int // Dimension Number 1

10 KEYWORDS:

11 [

12 NUMCHANNELS = 2 int // number of channels

13 TX START = 0 int // TX start (DATATYPE)

14 TX SIZE = 5200 int // TX size (DATATYPE)

15 DATA START = 6000 int // DATA start (DATATYPE)

16 DATA SIZE = 27000 int // DATA samples (DATATYPE)

17 NOISE START = 33000 int // NOISE start (DATATYPE)

18 NOISE SIZE = 20 int // NOISE size (DATATYPE)

19 DATE = 0 int // date format YYYYDDD

20 SYSTIME = time string // current system time (AST)

21 AZIMUTH = 0 float // azimuth (DEG)

22 GREGPOS = 0 float // gregorian (DEG)

23 CARRPOS = 0 float // carriage house (DEG)

24]

Each data header begins with a 96-byte space delimiter. This provides a boundary

between the data table and the next data available data header. The size of each file,

by default, is approximately 2 GigaBytes (GB); allowing for compatibility across the

spectrum of file systems. This 2 GB boundary is aligned to the data table’s size; removing

the need to deal with data tables that cross the file boundary. If required, the file size

can be changed to any arbitrary size. Once the data table size has been chosen, it

should remain consistent throughout the data set. If a user acquires data with different

parameters, then these differences should be sorted and multiple data sets should be

used. This greatly reduces complexity and provides a clean interface for other users of

the data. For example, if a single stream of data is processed in three different ways

(looking at different aspects of a single data set), each of the three processed streams

should be stored in three separate data sets. Otherwise, the user must skip around for

the particular set of data of interest; increasing software complexity and processing time.

59

Chapter 3

Radar Observations

In this chapter we present two radar experiments that utilized the new data acquisi-

tion system discussed earlier. Superb quality data acquired with this system attest its

sensitivity and for its class of modern DAS for research radars.

3.1 Meteor Observations

High power and large aperture (HPLA) radars designed for incoherent scattering sensing

of the ionosphere can detect decelerating particles in the size range 0.5-500 mm, smaller

than those detected by conventional meteor radars, allowing one to study a mass region

of the interplanetary dust distribution that was previously inaccessible to ground-based

instruments, and help to bridge the gap between spacecraft dust measurements and tradi-

tional meteor radar capabilities. In addition, the high sensitivity of the new DAS system

provides very large sets offering unprecedented statistics for this particle mass range.

In this section, a technique for real-time meteor detection is described and analysis

of two parameters: 1) height, and 2) radial velocity from a single event, recorded on

60

March 04, 2006, will be shown. In this particular experiment, meteor observations were

conducted in the E-region of the ionosphere using 47 µs uncoded pulses. The IPP was 2

ms and 4000 ranges were sampled at 37.5 m intervals starting at 77 km range. The radar

operated with a maximum peak power of about 1.6 MW. This meteor data was formatted

and stored using the Simple Header System described in Section 2.5. The received signal

of the radar was stored in binary format using 16-bit In-phase (I) and 16-bit Quadrature

(Q) samples. A detection algorithm was used offline to find and isolate meteor events for

the entire data set.

3.1.1 Detection Algorithm

The system’s ADCs accept a maximum input of 1 Vp−p into a 50 Ohm load (4dBm).

Voltage is produced from the digitized samples as

ṽ[n] ≡ s̃[n]
Vrange

2b
=

s̃[n]

65536
, (3.1)

where s̃[n] is the complex, digitized data sample, Vrange is 1 Vp−p, and b is 16 bits. Next,

power (RMS) is computed from the complex samples

P [n] ≡
∣

∣

∣

∣

ṽ[n]√
2R

∣

∣

∣

∣

2

≡ ṽ[n]ṽ[n]∗

2R2
=

Re{ṽ[n]}2 + Im{ṽ[n]}2

500
. (3.2)

To reduce noise contamination, a moving-average filter is implemented and detection

is maximized by setting the sample average equal to the width of the transmitted pulse

y[n] =
K−1
∑

k=0

P [n + k] for 0 ≤ n ≤ N − 1, (3.3)

61

where K is the length of the transmitted pulse and N is the total number of samples.

This operation is essentially a cross-correlation of the received signal with the normalized

transmitter pulse. For efficiency, the filter is implemented recursively beginnning with

computation of the initial value

y[0] =

K−1
∑

k=0

P [k].

Remaining computations are reduced to

y[n] = y[n − 1] + P [n + K] − P [n − 1] for 1 ≤ n ≤ N − 1.

Next, a fast-time (1 IPP) noise estimate is determined by

P̂n =
1

N − M

N−1
∑

n=M

P [n], (3.4)

where M is the starting height and N is the final height used in the estimation. The

filtered signal and a scaled noise estimate are used to determine detection

y[n] > αP̂n, (3.5)

where α is the threshhold value. This process is repeated for each IPP.

3.1.2 Parameter Estimation

To verify system operation, a number of events were recorded simultaneously with the

current system. Two parameters, height and velocity, were processed using the new DAS

and verified with the current system. In this section, a discussion of the method used for

processing will be given using a single event detected on March 04, 2006.

62

Each table of data stored using the SHS file system contains one second of data. Using

an IPP of 2 ms, 500 IPPs are available per table. The Range Time Intensity (RTI) plot

displays range and IPP number in the x-y directions and power is displayed using a color

map. Figure 3.1 illustrates an RTI plot of an event at 4:10:01 AST. From the image in

Figure 3.1: Range Time Intensity (RTI) plot

Figure 3.1, a single IPP is isolated from the data and plotted in Figure 3.2. This figure

provides enough information to compute both range and velocity of the meteor. In this

example, steps taken to process this information are automated using MATLAB software

and details are located in B.1. First, power from the radar return is computed for a single

IPP and is illustrated in Figure 3.3. Second, a cross-correlation of the power signal with

63

power from the transmitted pulse are computed. The result will produce a waveform as

shown in Figure 3.4. The peak of this waveform provides the midpoint of the meteor’s

range and is used to isolate the event for further processing. Isolation of the detected

event is shown in Figure 3.5. Next, an FFT analysis is performed on the isolated event

and the results are normalized as shown in Figure 3.6. The spectrm’s peak is used to

calculate the meteor’s radial velocity using

v = fd

λ

2
, (3.6)

where v represents radial velocity (m/s), fd is the spectrum peak, and λ is the wavelength

of the transmitted carrier (m). The following results were processed and verified with the

current system:

1. Range: 97.039 km ± 18.74 m

60 80 100 120 140 160 180 200 220 240
−600

−400

−200

0

200

400

600

Altitude (Km)

V
ol

ts
 (

V
)

Meteor Detection − Time Domain

Figure 3.2: IPP illustrating meteor in time domain

64

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index Number (n)

N
or

m
al

iz
ed

 P
ow

er

IPP Power − Time Domain

Figure 3.3: IPP power computation

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

Index Number (n)

M
ag

ni
tu

de

IPP Cross−Correlation

Figure 3.4: IPP cross-correlation with transmitted power to isolate detection

65

97 98 99 100 101 102 103 104 105
−6

−4

−2

0

2

4

6

Altitude (Km)

M
ag

ni
tu

de

Isolated Meteor Event − Time Domain

Figure 3.5: Isolated Meteor detection resulting from cross-correlation

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Isolated Meteor Event − Frequency Domain

Figure 3.6: Spectrum from meteor detection illustrating doppler spectrum

66

2. Velocity: 39.219 km/s ± 61.04 m/s

Error estimation of range was based on the system’s sampling rate (4 MHz) and velocity

error was calculated using both sampling rate and the number of points (32k) used in the

FFT analysis. Events from the current system were processed and a comparison revealed

precise matching, thus verifying system operation.

3.2 Plasma Line Observations

It is well-known that the most accurate method for measuring the electron density in the

upper atmosphere is using the plasma line resonance, which occurs close to the plasma

line frequency as predicted by incoherent scatter (IS) theory [e.g., Dougherty and Farley,

1960; Salpeter , 1960]. The plasma line (caused by scattering from electron plasma

waves) is greatly enhanced over thermal levels during the daytime by photo electrons

[e.g., Yngvesson and Perkins, 1968]. The information in the plasma line resonance lies

in the frequency of the return, not in the shape of the spectrum, as is the case for the

ion line. Frequency measurements are much more accurate than power or amplitude

measurements since they do not depend on receiver gains and system losses, which are

often difficult to measure and quite variable. Thus, using the plasma line resonance

frequency as an ionospheric diagnostic is particularly useful.

In this section, we present the first results of a new technique for measuring the

electron temperature in the daytime ionosphere using the Arecibo incoherent scatter

radar (ISR). The technique utilizes the plasma line component of the incoherent scatter

spectrum. The difference in the up- and down-shifted plasma line frequencies is related

to the density and temperature of the ionosphere, as well as more minor effects resulting

from photoelectrons, currents, and other sources. The shift is very small (the order of

67

1 kHz in a plasma line frequency of several MHz) but can be measured quite accurately

with the coded long pulse plasma line technique. We compare the results to ion line

measurements of the electron temperature, and the two in dependent techniques show

good agreement. In addition to providing a measure of the electron temperature that

is independent of the ion line, the approach allows for a sensitive test of kinetic plasma

theory including a magnetic field, gives us the ability to study photoelectron populations

and electron currents, and will allow us to constrain ion line fits in the bottomside (and

possibly topside) regions to more accurately fit for composition.

68

Chapter 4

Conclusions and Future Work

It is clear that the new DAS for the Arecibo radar has the capability of measuring high

quality data as attested by both meteor and plasma radar observations. The flexibility

and reliability of the system allows visiting scientists to develop exciting experiments in

space science.

We plan to enhance data throughput, system flexibility and capabilities by including

Field Programmable Gate Arrays (FPGA) technology at the front-end of the data acqui-

sition system and utilized a USB port for system control and communication. Of course

segments of the software presented in this thesis will have to be modified and adapted in

order to integrate this FPGA system. Also, the integration of a radar controller with the

data acquisition system will be conducted.

Finally, the radar software and control programs developed under this project will be

available freely to anybody through the Open Source software development web site of

SourceForge at: [http://sourceforge.net].

69

Appendix

A Convolution Sum Derivation

Derivation of the convolution sum begins with definition of the unit sample sequence

δ(n) =

1 n = 0

0 n 6= 0.

(1)

Using properties of the unit sample sequence, an alternative input sequence is given by

x[n] =
∞

∑

k=−∞

x[k]δ[n − k]. (2)

Substituting Equation (2) into Equation (1.20) results in

y[n] = τ

[

∞
∑

k=−∞

x[k]δ[n − k]

]

. (3)

Applying the property of linearity to equation (3)

y[n] =

∞
∑

k=−∞

x[k]τ

[

δ[n − k]

]

. (4)

I

Equation (4) contains another important sequence known as the unit impulse response

h[n, k] = τ

[

δ[n − k]

]

. (5)

Applying the property of time-invariance to equation (5) results in

h[n − k] = τ

[

δ[n − k]

]

. (6)

Combining the previous work into a single equation, a resulting output sequence

y[n] =
∞

∑

k=−∞

x[k]h[n − k] (7)

defines the output response in terms of both the input sequence and impulse response

of the system. The form of equation (7) is known as the convolution sum and is widely

used in the analysis and development of DSP algorithms.

B MATLAB Programs

B.1 metFreq.m

1 function [x,xfft,pfft,freq,time,F1,fftPoints,velocity,pulse]=

2 metFreq(fileName, sampleRate, pulseWidth)

3

4 %32k-point FFT

5 fftPoints = 1024*32;

6

7 %number of samples in tx pulse

8 pulse=ones(1,pulseWidth*sampleRate);

9

10 %ascii file containing detected IPP

11 x = load(fileName);

II

12

13 %isolate data window from IPP

14 orig = x(401:4400);

15 x = x(401:4400);

16

17 %compute pwr

18 xpwr = x.^2;

19 xpwr = xpwr/max(xpwr);

20

21 %cross-correlate signal with pulse

22 detection = conv(xpwr,pulse);

23

24 %find max point from correlation

25 [detection,index] = max(detection);

26

27 %treat max as midpoint and isolate detected samples from the IPP

28 %adjust for cross-correlation length

29 h1 = index - length(pulse);

30 h2 = index;

31

32 %starting height with cabling delay adjustment (4us)

33 h0 = sampleRate^-1*2000/6.67e-6 - 4/6.67;

34

35 %sample step in Km

36 tStep = 250e-9/6.67e-6;

37

38 %create altitude axis

39 axis1 = 1:4000;

40 axis1 = axis1*tStep+h0;

41

42 %compute one-sided spectrum

43 xfft = fft(x(h1:h2),fftPoints);

44 pfft = xfft .* conj(xfft);

45 pfft = pfft(1:length(pfft)/2);

46

47 %create frequency axis

48 freq = 0:sampleRate/fftPoints:sampleRate/2-1;

49

50 %plot data window

51 subplot(3,1,1);

III

52 plot(axis1,orig);

53

54 %plot detection window

55 subplot(3,1,2);

56 plot(axis1(h1:h2),x(h1:h2));

57

58 %plot normalized spectrum

59 subplot(3,1,3);

60 pfft = pfft / max(pfft);

61 plot(freq,pfft);

62

63 %search for spectrum max

64 for i=1:length(pfft)

65 if(pfft(i)==1) maxPoint = i;

66 end

67 end

68

69 %compute radial velocity from doppler spectrum

70 velocity = (freq(maxPoint)/2)*(3e8/430e6)

71 hDetect = axis1(h1)

72 error = sampleRate/fftPoints

73 %\end{lstlisting}

IV

Bibliography

[1] A technical report on digital signal synthesis. Technical report, Analog Devices,

1999.

[2] Automatic I/O Scheduler Selection for Latency and Bandwidth Optimization, 2005.

[3] A. Binstock. The producer/consumer threading model.

[4] G. Booch. Object Oriented Analysis and Design with Applications. The Benjam-

in/Cummings Publishing Company, Inc., 1994.

[5] C. Cantrell. Modern Mathematical Methods for Physicists and Engineers. Cambridge

University Press, 2000.

[6] M. Fowler. UML Distilled Third Edition. Pearson Education, Inc., 2004.

[7] F. J. Harris. Multirate Signal Processing for Communication Systems. Prentice Hall

Professional Technical Reference, 2005.

[8] E. B. Hogenaeur. An economic class of digital filters for decimation and interpolation.

IEEE transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2), April

1981.

V

[9] B. Izouggaghen, A. Khouas, and Y. Savaria. Spurs modeling in direct digital period

synthesizers related to phase accumulator truncation. Internation Symposium on

Circuits and Systems, 2004.

[10] E. Kudeki. Applications of radiowave propagation. 2003.

[11] G. Miller. The magical number seven, plus or minus two: Some limits on our capacity

for processing information. The Psychological Review, 63(2), 1956.

[12] K. Morris. Death of the hardware engineer. Embedded Technology Journal, 2006.

[13] A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Prentice-Hall Inc.,

1975.

[14] P. E. Pace. Advanced Techniques for Digital Receivers. Artech House, 2000.

[15] J. G. Proadkis and D. G. Manolikis. Digital Signal Processing Principles, Algorithms,

and Applications. Prentice-Hall, Inc., 1996.

[16] D. Robbins. Common threads: Advanced filesystem implementor’s guide, part 3,

2001.

[17] B. C. Rorabaugh. DSP Primer. The McGraw-Hill companies, 1999.

[18] K. M. Sanjit. Digital Signal Processing: A Computer Based Approach. McGraw-Hill

Companies, Inc., 2006.

[19] A. Shalloway and J. R. Trott. Design Patterns Explained: A New Perspective on

Object Oriented Design. Addison-Wesley Pearson Education, Inc., 2005.

[20] C. E. Shannon. Communication in the presence of noise. volume 86. Proceedings of

the IEEE, February 1998.

VI

[21] Texas Instruments. GC4016 MULTI-STANDARD QUAD DDC CHIP DATA

SHEET, 1.0 edition, August 27 2001.

[22] A. Torosyan and A. N. W. Jr. Analysis of the output spectrum of direct digi-

tal frequency synthesizers in the presence of phase truncation and finite arithmetic

precision. International Symposium for Image and Signal Processing and Analysis,

2001.

[23] J. B.-Y. Tsui. Digital Techniques for Wideband Receivers. Artech House, May 2001.

[24] R. G. Vaughan. The theory of bandpass sampling. IEEE Transactions on Signal

Processing, 39, 1991.

VII

