Telescope Interface Software

Brigham Young University
June 27, 2013

Contents
1 Introduction

2 Hardware Requirements

2.1 SUMMATY oo e
2.2 Dell PowerEdge C2100
2.3 ROACH-1 Development Board
2.4 Custom Receiver Boards
2.5 Hardware Integrationo

Software Requirements

3.1 Summary ...
3.2 byuslavepy
3.2.1 Establishing Socket Connections
3.2.2 Configuration File 0o oL
3.3 INSZ PATSE.DY « o o o e e e e e e e e e e e e
3.4 TESMANAZE.DY .+ « « v o e e e e e e e e e e
3.5 Gulp . . .
3.6 dnsmasq
3.6.1 Jetc/hosts
3.6.2 Jetc/dnsmasq.conf
3.6.3 Jetc/ethers
3.7 Python Libraries
3.8 NIC Configuration Tools
3.8.1 Maximum Transmission Unit
3.8.2 Receive Buffer Size o o o
Data Acquisition System
4.1 SUmMmMary e
4.2 Hardware Requirements
4.3 Command Definitions
4.3.1 Output Matrix
4.3.2 dagstart.

4.3.3 dagsetup
434 dagscan
4.3.5 dagbfscan
4.3.6 dagsspec
4.3.7 dagend
4.4 Data Format
4.4.1 Packet Header
4.4.2 Packet Data
4.5 Limitations
4.5.1 Packet Size
4.5.2 Bitrateo
4.5.3 Frequency Binso o
4.6 Interpreting Datao

Beamformer

5.1 SUummary . o.o.o. ..o e

5.2 TCP/IP Command Definitions
5.2.1 bf. o
5.2.2 bfupdateBFCoeffso
5.2.3 bfmultiupdateBFCoefts
5.2.4 bfgetdata
5.2.5 bfgetalldata
5.2.6 bfsetslice.
5.2.7 bfsetiacclen

5.3 Data Output

54 Coefficient Files
5.4.1 Coeflicient File Organization
5.4.2 Coeflicient File Format

Correlator

6.1 Summary

6.2 Hardware Requirements L.

6.3 TCP/IP Command Definitions
6.3.1 X . .o

6.4 Data Output

Gulp Code

Al Overview

A.2 Application Programming Interface (API)

A3 Changes e
A.3.1 64-Bit Support
A32 RingBuffer
A.3.3 Multiple File Capture
A.3.4 SIGUSRI Functionality
A.3.5 Additional Output

1 Introduction

The purpose of this document is to describe a customizable digital back-end for use with a
Radio Telescope controller. The overall functionality is depicted in the below figure:

ROACH Board w/ x64 ADC

upp / Z-; PAF
10GbE Receiver Elements
At
% Boards
8\
10GbE Switch

ICATSE
h 4

TCP/IP
CATSE

11 TB RAID O Drive
BYU Software Control GBT Telescope Control

2 Hardware Requirements

2.1 Summary

This section outlines more detailed descriptions of the hardware as well as how the entire
system is interconnected.

In order to make the system fully-functional, it must use the following hardware at minimum.

e Dell Powerkdge C2100

e ROACH-1 Development Board

Fujitsu XG2000C 10GbE Switch

BYU Custom Receiver Boards

2.2 Dell PowerEdge C2100

The Telescope Interface Software is hosted on a Dell PowerEdge C2100 server with the
following specifications:

e 16 3.07 GHz Intel Xeon CPUs

e Intel 10GbE SFI/SFP+ Network Card

e 12 2TB hot-swappable SATA drives configured into 2 11TB RAIDO virtual drives
e FusionlO ioDrive IT 785 GB

The back of the PC has several connectors that have an approximate configuration as shown:

For T lesoo pe Com mu nis Bo n

<m755 > (mrse > SFP- 1 SFP- 2

For Progmmming POACH For Dete AoquE iton

2.3 ROACH-1 Development Board

The ROACH Development Board requires an FPGA and an ADC card. The system is
designed to use the following two components:

e x64 ADC Card
e Virtex 5 FPGA

There are three types of connectors on the back of each ROACH board:

1. Male DE-9 Serial
2. CAT5 Ethernet
3. CX4 10Gb Ethernet

These connectors are approximately configured as shown in the below figure.

e
e (N Ny

Far Prog m mming For Datn Aojusiton Syste m

The ROACH sends status messages through the Serial port. The left-most CAT5 Ethernet
port is used for maintenance, while the right-most (the shaded port in the above figure)
is used for programming. The four CX4 ports are used for high-speed data transfers. For
example, the current Data Acquisition System uses CX4-0 (the shaded port).

2.4 Custom Receiver Boards

16 4-port receiver cards bandpass filter and mix the PAF signals from L-Band down to 25
MHz-wide bandpass signals centered at 37.5 MHz (i.e. the second Nyquist zone). When the
signals are sampled at 50 Mega-samples per second, they are aliased into the first Nyquist
zone.

There are two mixing stages for each port, each of which require a local oscillator (LO). The
first LO (i.e. LO1) is variable based on which 50MHz band should be observed. The second
LO (i.e. LO2) should be fixed at 442.5 MHz.

The two LOs are split in order to accommodate the four channels on each card. Therefore,
the LO ports at each receiver card should be driven with a 13 dBm signal. In order to
accommodate all 16 boards, a 16-splitter must be driven with a 25 dBm signal.

2.5 Hardware Integration

ROACH Board w/ x64 ADC

10GhE Switch

. JJ I
———\
11 TB RAID 0 Drive

BYU Software Control

The Dell PowerEdge C2100 is connected to the right-most CAT5E port on the ROACH
board (or a switch with multiple ROACH boards connected to it) with a CAT5 Ethernet
cable.

The ROACH boards that will run the Data Acquisition should be connected to the Fujitsu
switch using a CX4/CX4 cable. The CX4-0 port should be used on the ROACH board.
Make sure that the CX4/CX4 is no longer than 2 meters.

The Fujitsu switch connects to the PC with a XFP/SFP+ 10GbE cable. Make sure that the
XFP/SFP+ cable is no longer than 2 meters.

3 Software Requirements

3.1 Summary

In order to interface with the system, a set of Python scripts are used. These (1) facil-
itate communication with the Telescope Control (byu_slave.py), (2) parse TCP/IP mes-
sages and error checks them (msg_parse.py), and (3) manage ROACH and process resources
(res_manage.py). These are described in sections 3.2, 3.3, and 3.4 respectively.

In order to use the Data Acquisition System, an open-source piece of software called ” Gulp”
is used for packet sniffing. However, to minimize packet loss, modifications must be made,

and these are described in Appendix A. Information about the unmodified version are de-
scribed in Section 3.5.

The ROACH boards boot up a Linux kernel over the network. In order to do this, the PC
must be configured as a DHCP server. This is easily accomplished using dnsmasq, which is
described in Section 3.6.

The Python scripts used for controlling the system have several dependencies, which are
outlined in Section 3.7. How to install each one is described as well.

The SFP+ 10GbE Network Interface Controller (NIC), also needs to be configured for jumbo
packets and a larger buffer. How to accomplish this is described in Section 3.8.

3.2 byu_slave.py

This module continuously listens for TCP/IP socket connections and services them one at
a time. It has multiple methods in its API that facilitate communication between the Tele-
scope Control and this system. Instructions on how to make an example socket connection
to the system follow. Then a description of the various methods are outlined.

3.2.1 Establishing Socket Connections

Using Python, it is possible to establish a TCP /IP socket connection to the system by using
the following code:

import socket
import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("10.0.0.206",6000))
time.sleep(0.1)

”710.0.0.206”, for example, would be the IP address of the Ethernet port on the BYU
machine to communicate with. Once the socket connection is made, a message can be sent
in the following manner:

sock.send("Hello There!")

There is a closed set of messages that will be recognized. These commands are outlined in
the remaining sections.

Once the message has been sent, the socket must be discarded. This is accomplished in the
following manner:

sock.shutdown(socket.SHUT_RDWR)
sock.close()
time.sleep(1.0)

3.2.2 Configuration File

In order for the BYU system to properly function, many settings must be set. Any important
values can be set in a configuration .xml file. The format of the .xml file is as follows:

<Telescope>
<header> ... </header>
<socket> ... </socket>
<msg_parse> ... </msg_parse>
<res_manage> ... </res_manage>
</Telescope>

The <header> tag outlines basic information such as the name of the telescope, date, exper-
iment name, etc. The tags can be whatever the user requires, and they will be printed at
the start of a log file. An example of a header is as follows:

<header>
<telescope>A040 Simulation</telescope>
<date>June 11, 2013</date>
<author>Richard Black</author>
</header>

The <socket> tag specifies network parameters for socket communication. There are only
four tags that should be specified here: my_ip, my_port, their_ip, and their port. The
my_ip and my_port specify the IP address and fabric port to be used by the BYU machine.
The their_ip and their_port specify the IP address and fabric port to be used by the
Telescope PC. An example of a socket tag is as follows:

<socket>
<my_ip>10.0.0.1</my_ip>
<my_port>6000</my_port>
<their_ip>10.0.0.2</their_ip>
<their_port>6000</their_port>
</socket>

The remaining xml tags (<msg_parse> and <res manage>) correspond to the remaining
Python scripts msg_parse.py and res manage.py and, thus, will be fleshed out in more
detail in their respective sections.

3.3 msg_parse.py

This script is called by sock_server.py to parse the TCP /TP messages that are received from
the Telescope Control. In order for sock_server.py to function properly, this file must be in
the same directory.

This file verifies that any received socket messages match user-defined regular expressions.
These regular expressions are defined in the configuration file under the <msg_parse> tag.

The sub-tags inside of <msg parse> are all <msg> tags. These tags give meaning to the
socket messages that will arrive. Each <msg> tag has the following attributes:

e name
e ack
® err
e cmd

The name attribute gives the socket message a name. The ack attribute allows the user
to specify if an acknowledge message should be sent (”1”) or not (70”). The err attribute
allows the user to specify if error messages should be sent (”1”) or not (’0”). The cmd
attribute describes which DAQ command should be run. This links the socket messages
with our system commands. The available DAQ commands are as follows:

e dag_start

daq_setup
e dag_scan
e dag-_spec
e dag_end

These commands are fleshed out in Section 4.3. If the ack or err flag is set, a formatting
tag is needed. For ack, the ack_format tag is needed to specify what should be returned to
acknowledge. Additionally, an <ack_timing> tag must be there to specify when the acknowl-
edge should be sent ("before” or ”after”); "before” indicates that the acknowledge will be
sent before res_manage.py begins the process, and ”after” indicates that the acknowledge
will be sent after the process has completed.

If the user specified err to be ”1,” then an <err format> tag is needed. This is effectively
a printf statement that can contain a single %s to indicate where the error message should
print (if at all).

Lastly, if a socket message has any data acquisition parameters (such as acquisition /integration
time), the user can specify a <param> tag that houses a regular expression with (?#) markers
around the parameter’s regular expression. Since this allows for dynamic parameterization,
any parameters set in the res_manage tag will be superseded.

An example of a msg_parse tag is as follows:

<msg_parse>

<msg name="INIT" ack="1" err="1" cmd="daq_start">
INIT
<ack_format>init ok</ack_format>
<err_format>init err %s</err_format>
<ack_timing>after</ack_timing>

</msg>

<msg name="SETUP" ack="1" err="1" cmd="daq_setup">
SETUP ([A-Z_]*=[A-Za-z.+0-9]*)x*
<ack_format>setup ok</ack_format>
<err_format>setup err %s</err_format>
<ack_timing>after</ack_timing>
<param name="num_secs">TM_SECS=(7#) [0-9]+(. [0-9]*)? (7#)</param>

</msg>

<msg name="START" ack="1" err="1" cmd="daq_spec">
START([0-9.1)*
<ack_format>start ok</ack_format>
<err_format>start err %s</err_format>
<ack_timing>before</ack_timing>

</msg>

<msg name="EXIT" ack="0" err="0" cmd="daq_end">
EXIT

</msg>

</msg_parse>

The parser will verify that the received socket message matches one of the user and then
return the socket message in list format (delimited by spaces). The byu_slave.py script will
then forward this information to the res_manage . py script to call the appropriate commands.

3.4 res_manage.py

This script is called by byu_slave.py to manage the various ROACH and process resources.
In order for byu_slave.py to function properly, this file must be in the same directory.

This script controls the data acquisition system by interpreting the parsed socket messages
and calling the appropriate functions. To customize the script to know what resources should
be used, it has its own configuration file xml tag <res manage>.

Inside of the res_manage tag, there are three sub-tags:
e resources

e configuration

e gulp

10

The resources sub-tag lists the ROACH resources by IP address. Each ROACH receives
its own tag <roach> and is declared in the following manner:

<resources>
<roach name="roach1">10.0.1.1</roach>
<roach name="roach2">10.0.1.2</roach>
</resources>

The user can then specify which ROACH boards the processes can use. These processes are
defined in the configuration sub-tag. The process tag should have at minimum a process
tag that describes how the data acquisition system should be configured. Currently the real-
time beamformer and correlator modes are not implemented since a practical automation
has not been defined yet. To configure the data acquisition system, the process tag must
list the bitstreams, roach name, and acquisition parameters. This can be accomplished in
the following manner:

<configuration>
<process name="daq">
<bitstream fft="256">x64daq256.bof</bitstream>
<bitstream fft="512">x64daq512.bof</bitstream>
<bitstream fft="1024">x64daql024.bof</bitstream>
<roach>roachl</roach>
<params>
<param name="bin_start">103</param>
<param name="bin_end">153</param>
<param name="row_start">0</param>
<param name="row_end">7</param>
<param name="col_start">0</param>
<param name="col_end">4</param>
<param name="fft_length">512</param>
<param name="lsb_select">10</param>
<param name="num_secs">5.0</param>
<param name="num_specs">1000</param>
</params>
</process>
</configuration>

The various parameters are describe in more detail in Section 4.3.

Lastly, the gulp sub-tag sets parameters for the Gulp packet sniffer. The options that can be
customized are the ring buffer size (<buffer>), listening interface name (<if>), verbose flag
(<verbose>) and the output directory (<out_dir>). To better understand these parameters,
see Appendix A. At the moment, the verbose flag must be set to 1. If it is not, the system
will hang during the dag_start command. This is due to the fact that the system calls Gulp
as a subprocess and uses pipelined stdin and stdout to communicate.

An example of the Gulp configuration tag is as follows:

11

<gulp>
<buffer>10000</buffer>
<out_dir>/media/Disk0</out_dir>
<if>eth3</if>
<verbose>1</verbose>

</gulp>

3.5 Gulp

Gulp is an open-source optimized packet sniffer written in C. It uses multiple cores and a
ring buffer to divide the workload and buffer the data. The Data Acquisition System uses
Gulp to capture each sample spectrum onto the PC hard drives. The software can be found
at,

http://staff.washington.edu/corey/gulp/

To further enhance Gulp and make it compatible with this system, several modifications
need to be made. The modifications made are documented in Appendix A.

Additionally, the schedtool program is needed to set core affinities. This can be installed at
the command line with the following code:

apt-get install schedtool

3.6 dnsmasq

dnsmasq is a small DHCP server for a local network. It is used to assign IP addresses
to new clients on the network as well as to provide a TFTP server for clients needing to
network-boot. It is therefore used to allow ROACH boards on the network to boot and use
a filesystem located on the PC.

In order to install dnsmasq, the following command is used
sudo apt-get install dnsmasq
To start up the server, type
dnsmasq
To properly configure the server, the following files need to be modified:

1. /etc/hosts
2. /etc/dnsmasq.conf

3. /etc/ethers

12

The following sections outline how these files should be configured for this system. Once these
files have been modified, the server must be restarted by using the following command-line
code:

/etc/init.d/dnsmasq restart

Lastly, in order to make the filesystem available for use on the ROACH boards, the Network
File System (NFS) must be installed and configured as well. This is installed by using the
following code:

apt-get install nfs-kernel-server nfs-common
Then the /etc/exports file is appended with

/srv/roach_boot 169.254.145.0/255.255.255.0
(rw,subtree_check,no_root_squash,insecure)

Lastly, the filesystem is started with
exportfs -a

You can verify that dnsmasq is configured properly when the ROACH is restarted, booted-up
and you can open a secure shell on the ROACH using

ssh root@roach3

3.6.1 /etc/hosts

This file lists mappings of IP addresses to hostnames. An example of this file would be:

169.254.145.11 roachl roachl.ee.byu.edu
169.254.145.12 roach2 roach2.ee.byu.edu
169.254.145.13 roach3 roach3.ee.byu.edu
169.254.145.14 roach4 roach4.ee.byu.edu

This, in short, connects the IP address 169.254.145.11 with hostnames roach1 and roachl.ee.byu.edu,
and so forth.

3.6.2 /etc/dnsmasq.conf

This file lists commands that would normally be used at the command line when running
dnsmasq. The following code outlines a configuration file that sets dnsmasq up to listen on
interface "ethl (IP 169.254.145.1)” and designate a filesystem on the host PC for use on
the ROACH board:

13

interface = ethl

dhcp-range = 169.254.145.100, 169.254.145.200, 12h
read-ethers

dhcp-option = 42, 0.0.0.0

dhcp-option = 17, 169.254.145.1:/srv/roach_boot/etch_devel
bind-interfaces

dhcp-boot = ulmage

enable-tftp

tftp-root = /tftpboot

3.6.3 /etc/ethers

This file is used to assign IP addresses to clients with particular MAC addresses. An example
of this file follows:

02:00:00:03:01:14 169.254.145.14
02:00:00:03:01:13 169.254.145.13
02:00:00:03:01:12 169.254.145.12
02:00:00:03:01:11 169.254.145.11

3.7 Python Libraries

In order for the Python scripts to function, we need the following libraries:

e setuptools
o dev

e numpy

e katcp

e corr

e aipy

e pyephem
e iniparse

e construct
e spead

e hdpy

e matplotlib

e bitstring

14

Many of these libraries can be installed using;:
apt-get install python-<library_name>
These libraries are:

e setuptools
e dev

e numpy

e hdpy

e matplotlib
The remainder of the libraries can be found in a .tar.gz format at
pypi.python.org/pypi/<library_name>
Once the downloads are complete, you can extract their contents using:
tar -xvf <library.tar.gz file>

The libraries can be installed by navigating to the directories that are extracted from the
.tar.gz archive and typing

python setup.py install

The only library that does not fit this mold is bitstring. To extract the contents of the
archive, you must use the unzip program, installed using the following code:

apt-get install unzip
The archive can then be unzipped by using the following code:

unzip bitstring 3.0.2.zip

3.8 NIC Configuration Tools

In order for the onboard SFP+ 10GbE Network Interface Controller (NIC) to be optimized
for 10GbE transfer, the two following settings need to be changed:

1. Maximum Transmission Unit (MTU)

2. Receive Buffer Size

15

3.8.1 Maximum Transmission Unit

The MTU can be changed quickly on the command-line by typing:
ifconfig ethX mtu 9000

where ethX is the name of the SFP+ 10GbE interface. However, this is not a permanent
change. To make the change permanent, the MTU parameter should be changed in ”Net-
work Settings.”

3.8.2 Receive Buffer Size

In order to modify the Receive Buffer Size, the ethtool program is needed. This is installed
using the following code:

apt-get install ethtool
The Receive Buffer Size is then modified by using the following code:

ethtool -G ethX rx 4096

4 Data Acquisition System

4.1 Summary

The Data Acquisition System captures frequency windows of data captured from 64 elements
sampled at 50 MHz. The data is transmitted via 10GbE to a packet sniffer named Gulp. To
use the system, the user must (1) start every process, (2) perform one or more scans, and
(3) shut down every process.

4.2 Hardware Requirements

In addition to the universal necessities of every system, the Data Acquisition System requires
additional connections.

1. a 10GbE CX4/CX4 connection between the programmed ROACH and a Fujitsu XG2000C
10GbE switch.

2. a 10GbE XFP/SFP+ connection between the Fujitsu switch and the Dell PowerEdge’s
on-board SFP+ 10GbE port.

16

4.3 Command Definitions

As described in Section 3.3, socket messages are translated to DAQ commands. This section
describes all of the possible commands that these socket messages can translate to.

daq_start | Initializes the system

daq_setup | Non-essential Specifies additional parameters and metadata

daq_scan | Performs a single acquisition (scan)

daq_spec Starts a pseudo-real-time spectrometer

daq_bfscan | Performs three acquisitions across the entire bandwidth (512 FFT only)
daqg_end Shuts the system down

These commands are described in greater detail in the following sections. In order to under-
stand the row and column parameters, a section about the output matrix will also follow.

4.3.1 Output Matrix

The x64 ADC card acquires 64 simultaneous samples that staggered across eight (8) ADC
chips. Each chip then outputs its 8 samples serially. The FPGA that processes the samples
runs on a 200 MHz clock and thus provides 2 output lines for each ADC chip that update
on each cycle. Thus, there are 16 samples available on every clock cycle. The FFT then
serially outputs 2 frequency bins every cycle even though it calculates the frequency bins for
4 input lines. Because of this, the outputs appear in a peculiar order, as displayed below:

L J o[1[2[3[4[5][6] 7]
0] 8| 2/10] 4]12] 6|14
1] 9] 3[11] 5|13] 7|15

16 [24 [18 | 26 | 20 | 28 | 22 | 30

17 [25 (19 | 27 | 21 |20 | 23 | 31

32 [40 | 34 | 42 | 36 | 44 | 38 | 46

33 | 41 | 35 | 43 | 37 | 45 | 39 | 47

48 |56 | 50 | 58 | 52 | 60 | 54 | 62

19 | 57 | 51|59 | 53 | 61 | 55 | 63

|| O | W N+~ O

This illustrates what data is available for each clock cycle. The columns represent time and
the rows represent data lines. Each column’s frequency bins are outputted first and then the
next column is outputted.

If the user wanted to capture from elements 2, 3, 4, 5, 10, 11, 18, 19, 20, 21, 26, and 27, he
or she would request rows 0-3 and columns 2-4.

17

L ol 1]2[3[4[5][6]7]
0] 8|2 |[10]4 [12] 6] 14
1] 9]3 [11|5 |13| 7|15

16 | 24 | 13 | 26 | 20 | 28 | 22 | 30

17 [25 |19 | 27 | 21 | 20 | 23 | 31

32 | 40 | 34 | 42 | 36 | 44 | 38 | 46

33 | 41 | 35| 43 | 37 | 45 | 39 | 47

48 [56 | 50 | 58 | 52 | 60 | 54 | 62

19 [57 | 51 | 59 | 53 | 61 | 55 | 63

N O T W N O

There is a restriction on the number of rows that can be requested. The number of rows
must be 0 modulo 4, or, in other words, a multiple of 4. Therefore, the user can request
either 4 contiguous or all 8 rows during capture. There is no restriction on columns.

4.3.2 daq_start

This command initializes the entire data acquisition system with a particular FFT length.
If the system has been started previously, then this command restarts the system. It does
not start an acquisition.

The length of the FFT should either be specified in the configuration file as described in
Section 3.4 or through the socket message, which requires the user to define how the param-
eter is set in the message by modifying the configuration file as described in Section 3.3.

The FFT length parameter name is fft_len and must be either 256, 512, or 1024.

4.3.3 daq_setup

This command allows the telescope control to dynamically specify some parameters and
indicate any additional metadata not supported by the x64 system. The remainder of these
sections outline which parameters can be specified using this command.

4.3.4 daqg_scan

This starts the Data Acquisition System for a single scan. Once the desired number of sec-
onds have been captured, the system returns to a standby mode and waits for additional
commands.

Each scan, naturally, needs a filename. The user can specify this filename through a
daq_setup command that was called previously or in the current socket message (see Sec-
tion 3.3 for details). If a filename is not specified, then a timestamp (<yyyymmdd-hhmmss .bin>)
is used by default.

The acquisition parameters can be set through the socket message, through a daq_setup

command, or in the configuration file (as described in Section 3.4). These parameters are
the following:

18

bin_start | The frequency window starting bin
bin_end | The frequency window ending bin
row_start| The starting row in the output matrix
row_end | The ending row in the output matrix
col_start | The starting column in the output matrix
col.end | The ending column in the output matrix
num_secs| The number of seconds to capture

bin_start should be between 0 and 1%“ — 1 and less than b_end.

bin_end should be between 0 and l%n — 1 and greater than or equal to bin_start. The
number of bins captured should also be greater than 2.

row_start should be between 0 and 7 and less than row_end.

row_end should be between 0 and 7 and greater than row_start. Additionally, row_end -
row _start + 1 should be divisible by 4.

col_start should be between 0 and 7 and less than col_end.
col_end should be between 0 and 7 and greater than col_start.

num_secs should be between 0 and 9,999. This can also be represented as a float (e.g.
240.5).

4.3.5 daq_bfscan

This command, like dag_scan, puts the system into capture mode, but it performs three
separate captures in order to acquire across the entire bandwidth. Once the three captures
are completed, the system returns to standby mode.

The acquisition parameters are the same for this command as for dag_scan except for the
bin_start and bin_end parameters (since we are capturing all frequency bins).

4.3.6 daq_spec

This command puts the system into pseduo-real-time spectrometer mode. The user can
then open the MATLAB script plot_specs-06252013.m to plot constantly updating spec-
tra for all specified elements. To use this properly, the output directory specified in the
configuration file (see Section 3.4) must be used in the MATLAB script. The script will
then examine the output directory and plot the latest file. In order for this script to
work, the parse_and plot x64.m MATLAB script must be in the same working directory
as plot_specs-06252013.m.

The parameters used for this command are identical to the ones needed for dag_scan, with ex-

ception to the filename. The filename that is created is a timestamp (yyyymmdd-hhmmss)
following by a spectrum number. An example of a set of 100 spectrometer files is as follows:

19

20130615-153237_spec_1.bin
20130615-1563237_spec_2.bin
20130615-153237_spec_3.bin

20130615-153237_spec_99.bin
20130615-1563237_spec_100.bin

The update speed of the MATLAB plots is directly correlated to the capture time (i.e.
num_secs), therefore (for better real-time updates) a shorter acquisition time is preferred.
Additionally, if the number of packets parsed is smaller, the faster the update will be, so
modifying this in the plot_specs-06252013.m script is recommended.

4.3.7 daq_end

This command performs a clean shutdown of the data acquisition system. Once this com-
mand has been issued, the data acquisition system can only be started up again with the
dag_start command.

4.4 Data Format
4.4.1 Packet Header

The data is stored into packets. Each packet contains a 64-bit header word that describes the
parameters provided by the user. Bits 63-54 (where 64 is the MSB) represent the starting
frequency bin. Bits 53-44 represent the ending frequency bin. Bits 43-41 represent the
starting row number. Bit 40 represents whether 4 or 8 rows were captured. Bits 39-37
represent the starting column. Bits 36-34 represent the ending column. Bits 33-32 represent
the length of the FF'T by using a encoding as outlined:

Bits 33-32 | FFT Length
00 256
01 512
10 1024
11 Not supported

Bits 31-0 represent the packet number. The Oth packet is the first packet sent after requesting
a capture. The following table outlines the first 32-bits of the header:

| 63—54 | 53—44 | 43—41 | 40 | 39—37 | 36—34 | 33—32 |

’ bin_start \ bin_end \ row_start \ row_flag \ col_start \ col_end \ fft_len ‘

4.4.2 Packet Data

The data is stored into packets. Each 64-bit word consists of 4 8-bit real and 8-bit imaginary
values that represent a single frequency bin of a single input element as such:

20

| 158 | 70 |
| Re(Bin) | Sm(Bin) |

Each 64-word represents a frequency bin for four rows of a single column. The next word is
the next frequency bin for the same four elements until the bins are exhausted. The next
four rows are then stored in the same manner. This continues until every column has been
treated. The packet is then closed.

If a capture contained rows 0-3 and columns 2-4 and bins 0-9, then the packet will be struc-
tured in the following manner:

’ 63 downto 48 \ 47 downto 32 \ 31 downto 16 \ 15 downto 0 ‘

Element 2, Bin 0

Element 3, Bin 0

Element 18, Bin 0

Element 19, Bin 0

Element 2, Bin 1

Element 3, Bin 1

Element 18, Bin 1

Element 19, Bin 1

Element 2, Bin 9

Element 3, Bin 9

Element 18, Bin 9

Element 19, Bin 9

Element 10, Bin 0

Element 11, Bin 0

Element 26, Bin 0

Element 27, Bin 0

Element 10, Bin 9

Element 11, Bin 9

Element 26, Bin 9

Element 27, Bin 9

Element 4, Bin 0

Element 5, Bin 0

Element 20, Bin 0

Element 21, Bin 0

Element 4, Bin 9

Element 5, Bin 9

Element 20, Bin 9

Element 21, Bin 9

If eight rows are requested, then the top four rows of a column are stored, followed by the
bottom four rows. For example, a capture containing rows 0-8, columns 5-6, and bins 20-45,
each packet would be structured as follows:

63 downto 48

|

47 downto 32

|

31 downto 16

15 downto 0

Element 12, Bin 20

Element 13, Bin 20

Element 28, Bin 20

Element 29, Bin 20

Element 12, Bin 21

Element 13, Bin 21

Element 18, Bin 21

Element 29, Bin 21

Element 12, Bin 45

Element 13, Bin 45

Element 18, Bin 45

Element 29, Bin 45

Element 44, Bin 20

Element 45, Bin 20

Element 60, Bin 20

Element 61, Bin 20

Element 44, Bin 45

Element 45, Bin 45

Element 60, Bin 45

Element 61, Bin 45

Element 6, Bin 20

Element 7, Bin 20

Element 22, Bin 20

Element 23, Bin 20

Element 6, Bin 45

Element 7, Bin 45

Element 22, Bin 45

Element 23, Bin 45

Element 38, Bin 20

Element 39, Bin 20

Element 54, Bin 20

Element 55, Bin 20

Element 38, Bin 45

Element 39, Bin 45

Element 54, Bin 45

Element 55, Bin 45

21

4.5 Limitations
4.5.1 Packet Size
The Data Acquisition transmits jumbo packets, that is to say 1024 64-bit words, to maximize

data transfer. This means that no single packet can exceed 1024 64-bit words.

Due to the packet structure described in 4.4, the number of words in a single packet is
calculated as such,

num_bins X num_rows X num-_cols
num_words = 1 +1

where num_bins is the number of frequency bins to capture
(i.e. bin_end—bin start + 1),

num_rows is the number of rows in the output matrix (described in Section 4.3.1) being
captured
(i.e. row_end—row start + 1), and

num_cols is the number of columns in the output matrix being captured
(i.e. col_end—col_start + 1).

If the number of words exceeds 1024, then the Data Acquisition System will not proceed
and will send an error message to the Telescope Control.

4.5.2 Bitrate

The Data Acquisition supports bitrates up to 6 Gigabits per second (Gbps). Due to the
packet structure described in Sections 4.4.1 and 4.4.2, the bitrate can be calculated as follows

num_words X sample_rate x bits_per_word

bitrate =
Hrate fft_length

Where num_words is defined as in Section 4.5.1.
sample_rate = 50 x 10° (50 MHz).
bits_per_word = 64.

fft_length is the length of the FFT being used.

If the bitrate exceeds 6 Gbps, the Data Acquisition System will not proceed and will send
an error message to the Telescope Control.

22

4.5.3 Frequency Bins

Due to the buffering scheme used in the system, it is not possible to acquire more than half of
the available frequency bins. The F-Engine (the module that performs the Discrete Fourier
Transform) outputs only %fft,length frequency bins. Of these available bins, only % can be
acquired in a single acquisition. Thus the maximum number of acquirable bins are

1
1 ftt_length

Thus, for example, an fft_length of 1024 allows the user to acquire up to 256 frequency bins.

4.6 Interpreting Data

In order to parse and plot the captured data, the user must run the parse_dag_data.m
MATLARB script. The format of this command is as follows:

parse_daq_data(file_name, num_packets)

file_name The name of the file that was captured to.
num_packets | The number of packets to be captured.

The num_packets parameter specifies how many packets (starting with the first one cap-
tured) should be parsed and plotted. If the user wants to parse all of the captured packets,
-1 should be used for this argument.

The script will then parse the data and make a MATLAB plot for every captured element’s
frequency content. Each captured spectrum is plotted as a different color.

5 Beamformer

5.1 Summary

The Beamformer is really 7 independent broadband (25MHz) beamformers. Using the x64
ADC, the Beamformer has the same number and organization of inputs as does the DAQ.
The input for each of the 7 beamformers is generated by a 512 point FFT, and the output
of accumulated and stored in a BRAM on the ROACH board. The outputs can be plotted
and viewed on the host computer.

5.2 TCP/IP Command Definitions

The following TCP /IP messages are used to control the Beamformer:

23

bf(...) Starts the beamformer
bf_updateBFCoeffs(. . .) Updates weights of a single beamformer
bf_multi_updateBFCoeffs(...) | Updates weights of all beamformers
bf_get_dataf(...) Plots output of a single beamformer
bf_get_all_dataf(...) Plots output of all beamformers
bf_set_slice(. . .) Sets slicing of FFT output
bf set_acc_len(...) Sets accumulation time

5.2.1 bf

This starts the beamformer. The FFT output is packaged into a 4-bit real/4-bit imaginary
byte before being sent to the beamformers. The user can specify which 4 bits should be used
as inputs for the beamformers. The output of each beamformer is accumulated for a user
specified length of time.

bf (roach,acc_len,win_slice,num_beams,coeff_filel ... coeff_file7)
roach The name of the ROACH board to program
acc_len Accumulation length in seconds

win_slice The starting bit of the 4-bit window
num_beams | The number of beamformers to create
coeff fileX | The name of the coefficient file to assign to beam X

roach should be a string of the format "roachX” where ”"X” is a digit between 0 and 9.
acc_len must be greater than .00002. A value bigger than 10 can cause overflow issues
in the output BRAM. This ceiling is dependent on input levels, and varies across different

applications. A single time sample can be accumulated by using a value of -1.

win_slice should be between 0 and 7. 0 corresponds to least significant bits an 7 corresponds
to most significant bits.

num_beams should be between 1 and 7.

coeff fileX is the location on the desired coeflicient file. For correct coeflicient file format-
ting, see Section 5.4.2

5.2.2 bf updateBFCoeffs

Updates a beamformer’s coefficients. In order to do this, the bf (...) command should have
been previously called.

bf_coeff (roach,beam_num,coeff_file)

24

roach Name of the ROACH board that has a beamformer
beam _num | Beamformer to modify
coeff file Location of the new coefficient file

beam _num should be a digit between 1 and 7.

5.2.3 bf multi updateBFCoeffs

Updates multiple beamformers with the same coefficient file.

bf _multi_updateBFCoeffs(roach, num_beams, coeff_file)

roach Name of the ROACH board that has a beamformer
num_beams | Number of beamformers to update
coeff file Location of the new coefficient file

num_beams is the number of beams that will be updated. This always starts with beam-
former 1 and goes up to the number specified.
5.2.4 bf get_data

The output of each beamformer is being continually accumulated and stored in a BRAM on
the roach. This stored value can be plotted and viewed on the host computer by calling this
function.

bf_get_data(roach, beam_num, log)

roach Name of the ROACH board that has a beamformer
beam_num | Beamformer number
log Plots on a log scale. (optional)

log is an optional string which is used to plot the output data on a log scale (similar to
MATLAB’s semilogy(...))

5.2.5 bf get_all data

The outputs of multiple beamformers is plotted in the same figure.

bf_get_all_data(roach, num_beams, log)

roach Name of the ROACH board that has a beamformer
num_beams | Number of beamformers to plot
log Plots on a log scale. (optional)

num_beams is the number of beams to plot, starting with beamformer 1.

25

5.2.6 bf_set_slice

The 18_18 (real_imaginary) bit value output by the FFT must be sliced down to 44 before
it is sent to the beamformers. This function sets which set of 4 4 bits are chosen. Idealy,
this should be set so that it is as low as possible while allowing the the next bit after the Isb
to toggle with no input.

bf_set_slice(roach, slice_num)

roach Name of the ROACH board that has a beamformer
slice_num Index of desired slice window

slice_num is the index of the desired slice. This can be any digit between 0 and 7. This
index corresponds to the bit used for rounding which is the desired LSB - 1. For example:
slice 0 contains bits 4 through 1 with bit 0 being used for rounding.

5.2.7 bf set_acc_len

The accumulation length can be changed after initialization. This may be done at any time.

bf_set_acc_len(roach, acc_len)

roach Name of the ROACH board that has a beamformer
acc_len Accumulation length in seconds

acc_len must be greater than .00002. A value bigger than 10 can cause overflow issues
in the output BRAM. This ceiling is dependent on input levels, and varies across different
applications. A single time sample can be accumulated by using a value of -1.

5.3 Data Output
Not sure what the output will really be. just a plot maybe?

5.4 Coefficient Files
5.4.1 Coefficient File Organization

Like the ADC input ordering, the coefficient file has a confusing organization. (For more on
ADC input ordering, see Section 4.3.1.) The organization comes from the need to present
coefficients in the order that the ADC samples data. Because not all inputs are sampled
simultaneously, they are also not presented to the beamformers simultaneously. As shown in
Section 4.3.1, the beamformers see samples from inputs 0, 1, 16, 17, 32, 33, 48, 49 at once,
followed by 8, 9, 24, 25, 40, 41, 56, 57 and so on. The coeffecient file must be organized so
that all frequency bins for each set of eight inputs are presented before moving on to the
next set of eight inputs.

26

In addition to the input ordering, the beamformers have been designed to use a single weight
for four consecutive frequency bins. (This was done to meet timing constraints.) So, for the
64 input, 512 point FFT design, the coefficients can be organized into a 64 x 64 matrix.

For example, consider the matrix W

Wo,0 Wo,1 te W1i,n—1
wW1,0 wWi,1 ce Wa . n—1
Wm,n - . . .
Wm—-1,1 Wm-12 ' Wmpm—1n-1

where the m corresponds to each set of four frequency bins, and n corresponds to each input
port.

The coefficients should be reorganized into a single vector before being written to the coef-
ficient file. The correct organization of the coefficient vector w for the example matrix W is
as follows:

[wo,o Wo 1 Wo,16 W17 Wo,32 Wo33 Woas Wo49
Wo,8 Wo,9 W24 Wo2s5 W40 Wo41 Wos6 Wos7
Wo,2 Wo,3 Wo,18 W119 Wo34 Wo35 Wos0 Wo51
Wo,11 Wo,12 Wo26 Wo27r Wo4a2 W43 Woss Wo,59

Wo 4 Wo,5 Wo,20 Wi121 Wo36 Wo37r Wos2 Wo53
Wp,12 W13 Wo,28 Wi29 Wo44 W45 Woeo Wo,61
Wo,6 Wo,7 Wp,22 Wi23 Wo,38 Wo39 Wos4 Wis5
Wo,14 Wo,15 W30 Wi131 Wouae Wia7r Woe2 Wi163
W1,0 W11 Wi1e W217 W232 W33 W48 W249 """
We3,14 We3,15 We3,30 We3,31 We3,46 We3,47 We3,62 w63,63]

gl
Il

This vector follows the input port organization explained in Section 4.3.1.

5.4.2 Coefficient File Format

Each line of the coefficient file contains two complex, 16 bit (8 real, 8 imaginary), coefficients
written as a two’s compliment hexadecimal number. Any hex designation (\x, #, Oh, etc.)
is left off. As stated, each line contains two coefficients. Referring back to the coefficient
vector w these will be consecutive values, i.e. wgyo wo1. The file is a simple text file with a
.coe extension.

As an example, consider the coefficients ¢; =0, co =1, c3 =7 and ¢4 = 1+ j.
Using these coefficients, the file would be as follows:

27

Coeflicient Value Hex Value

o 0 0000
c 1 0100
cs j 0001
cy 1+j o101

00000100

00010101

<empty line>

Be sure to remember the final newline character.

6 Correlator

6.1 Summary

Stuff

6.2 Hardware Requirements
Stuff

6.3 TCP/IP Command Definitions
The following TCP /TP messages are used to control the Correlator:

| x(...) | Starts the correlator |

6.3.1 x

6.4 Data Output
Stuff

28

A Gulp Code

Gulp is a network packet sniffer developed by Corey Satten from the University of Washing-
ton (2007). The goal of the software was to provide a means of capturing data with speeds
up to 1 Gigabits-per-second (Gbps) without loss. Satten’s software was able to achieve this
data rate with a 2.6 GHz Intel core2duo CPU.

For application in the x64 system, the 1 Gbps benchmark is insufficient. Therefore, several
additions to both software and hardware were needed. Changes to hardware have been well
documented in the main body of this text, but the changes made to the Gulp software have
yet to be outlined. This appendix serves to address these changes. However, before describ-
ing these changes, it is important to understand the basic structure and function of Gulp.

A.1 Overview

The basic structure of Gulp is characterized by two threads on individual CPU cores: the
first thread serves as a ”Reader,” which constantly monitors the activity at the Network
Interface Controller (NIC), also known as the Ethernet port. It then transfers the data from
the NIC to a buffer in RAM, hereafter referred to as the ”ring buffer.” The second thread
serves as a ” Writer,” which extracts data from the ring buffer and saves it to a user-defined
file on disk. Below is a diagram of this process.

Ring Buffer

Writer
Thread

Reader

Thread Disk

Network

Occupied
byte

A.2 Application Programming Interface (API)

append
Takes an array of data and appends it to the end of the ring buffer. If the appending marks
the end of a file, the file boundary logic is updated appropriately.

char * ptr | Pointer to the next set of data to append to the buffer
int len Length in bytes of the data to append
int bdry | Flag to specify if multiple files are being written

29

got_packet

The callback function to be used by pcap_loop. It is triggered by the reception of a new
packet at the NIC. It also performs some error checking based on system parameters. Once,
all pre-processing has been completed, the packet is written to the ring buffer through a call
to append.

u_char * args The last argument that was passed
to the pcap_loop function

const struct pcap_pkthdr * header | The pcap header, which contains
info such as time stamp, size, etc
const u_char * packet The actual packet data

cleanup
The callback function used for the SIGINT signal (Ctrl+C). It breaks the pcap_loop call and
begins a clean shutdown of the system.

’ int signo \ The number associated with the signal SIGINT ‘

Reader

A thread (CPU 1) that constantly monitors the activity on the NIC and captures packets
that it sees. It then writes these packets to the ring buffer. It then writes a file header of
Oxalb2c3d4 and calls pcap_loop.

void * arg | The arguments passed to the thread. There are none for this
application

newoutfile
Redirects the output of the Writer thread to the specified file.

char * dir | The name of the new file
int num Deprecated

Writer
A thread (CPU 0) that copies a chunk of the ring buffer to the current file. If a write to disk
will overwrite a file boundary, the newoutfile function is called.

void * arg | The arguments passed to the thread. There are none for this
application

usage
Prints the usage statement for Gulp along with the various flags and switches that can be
used. They are described here for convenience:

30

—help Prints usage statement

-d Decapsulates Cisco ERSPAN GRE packets (sets -f value)

£ Specify the pcap filter

-i eth# | Specifies the ethernet interface to be used for capture

-s # Specifies packet capture ”snapshot” length limit

T # Specifies the ring buffer size in megabytes

-C Forces packets to output to stdout instead of a file

-X Request an exclusive lock (to be the only instance running).

-X Run even when locking would forbid it

-V Print program version and exit

-V xx | Display verbose output (buffer use and packet loss)

-p Specify full/empty polling interval in microseconds

-q Suppress full buffer warnings

-7 Specify write block size (must be even power of 2, default 65536)

-0 dir | Redirect output into a collection of files found in dir

-C# Limits each file in the directory specified by -o to # times the
ring buffer size

-W # | Overwrite files in the directory specified by -o instead of starting
over

The main function. It starts the Reader and Writer threads, initializes the file boundary
logic, and parses the command-line arguments. Once the two threads are independently
running, this function begins printing status messages every 0.5 seconds (if -V xx” is set).

A.3 Changes

There are multiple things that needed to be changed in order to accommodate the x64 sys-
tem. These changes will be addressed one at a time.

A.3.1 64-Bit Support

In order to utilize ring buffers larger than 4 GB, we need to have 64-bit support. Therefore,
all variables that represent buffer indices or byte counts must be updated from int to long.
These include the following (in a global context):

. int maxbuffered

. int ringsize

. int volatile start, end

. int volatile boundary (will soon change to array)

31

There are also some local variables that need to be changed from int to long. These are
enumerated in the following table:

\ Function H Variables \
append avail | used
Writer used | writesize | n
main used

A.3.2 Ring Buffer

The x64 system has approximately 192 GB of RAM. However, Gulp, by default, only sup-
ports ring buffers up to 1 GB in size. Therefore, the -r argument parsing code in the main
function needs to be slightly changed.

case ’r’:
t = atoi(optarg);
if (¢ <1 || t > 1024%180)

fprintf (stderr, "Ys: -r number must be 1-184320\n", progname);
++errflag;

else
ringsize = t * 1024x%1024L;

break;

This makes it possible to create ring buffers up to 180 GB.

A.3.3 Multiple File Capture

The -0 command-line argument already provides a mechanism for creating multiple files.
However, this creates a file that are X times the ring buffer size large. However, for the vast
majority of the x64 functions, there can be multiple files contained in a single ring buffer.
Therefore, a single file boundary pointer is insufficient; an array of pointers is needed.

Gulp, by default, uses a single pointer to mark the byte location in the ring buffer where the
current file should be finished. This is depicted in the below figure.

32

start

boundary

end

Since Gulp’s default behavior is to only create new files when a certain number of ring buffers
have been saved, a single pointer is sufficient. Therefore, to save multiple files in a single
file, we need to use an array of pointers, as depicted in the below figure.

start

boundaries

end

0|0|0]~ |~

We therefore create the array globally, using a macro to specify the length.

#define MAX_BURSTS 1200

long volatile boundaries[MAX_BURSTS];
int volatile cur_bound = -1;
int volatile next_bound = O;

33

In the append function, the boundary pointer logic needs to be updated.

if (just_wrapped && bdry) {
just_wrapped = O;
if (odir && ++wrap_cnt >= split_after && split_after != -1) {
if (cur_bound '= -1) {
while (boundaries[cur_bound] >= 0) {
if (warned < push) {
warned = push;
if (warn_buf_full) {
fprintf (stderr,"%s: ring bufer full\n", progname);
}
}

usleep(poll_usecs);
}
}
boundaries[next_bound] = end;
next_bound++;
wrap_cnt = O;

if (!just_copy) {
append((char *)&fh, sizeof(fh), 0);
}

}

Inside the Writer thread, the file boundary logic should also be updated.

if (writesize >= 0) {
if (cur_bound !'= -1) {
if (start<=boundaries[cur_bound] && start+writesize>=boundaries[cur_bound]){
writesize = boundaries[cur_bound] - start;

}
}

writesize = write(1, buf+start, writesize);

}

start += (start+writesize >= ringsize) 7 writesize-ringsize : writesize;

if (cur_bound '= -1) {
if (start == boundaries[cur_bound]) {
if (max_files && filec >= max_files) {
filec = 0;

}

newoutfile(odir, filec++);
boundaries[cur_bound++] = -2;

34

}

pushed = push;

}

Then a small initialization segment needs to be added to main.

int bcnt;
for (bent = 0; bent < 1100; bent++) {
boundaries[bcnt] = -1;

}

Lastly, we need a command-line argument to put Gulp into a multiple-file capture mode.
The below code will be added to the main function. The ”-g” flag will be used.

case 'g’:

if (odir '= 0) {
fprintf (stderr, "%s: -g can’t be used with -o\n", progname, odir);
errflag++;

}

g_flag = 1;

get_next_file();

fprintf (stderr, "file_name = %s\n", file_name);

break;

This implies that we need a global flag that indicates that the ”-g” argument is being used.
int g_flag = O;

As you may have guessed, the get next _file() function needs to be defined as well. This
waits for the user to input a new file name.

void get_next_file() {
char temp_name[512];
fprintf (stderr, "Waiting for new file...\n");
fgets(temp_name, 511, stdin);

int 1i;
for (i = strlen(temp_name)-1; i > 0; i--) {
if (temp_name[i] == ’\n’) {

temp_name[i] = ’\0’;

}
}

strcpy(file_name, temp_name);

35

A.3.4 SIGUSRI1 Functionality

In conjunction with the multiple-file capture mode, we need a mechanism to trigger a new
file. To this end, the SIGUSR1 system signal will be used.

First a callback function is needed for when the SIGUSR1 signal is asserted. This will update
the file boundary pointers and, potentially, the file number.

void callback_handler(int signum) {
boundaries[next_bound++] = end;
if (cur_bound == -1) {
cur_bound = O;
}

get_next_file();

}

Next we link the SIGUSRI signal with the callback function. This should be done in the
Reader thread.

if (g_flag == 1) {
struct sigaction res;
res.sa_handler = callback_handler;
sigemptyset (&res.sa_mask) ;
res.sa_flags = 0;

sigaction(SIGUSR1, &res, NULL);

A.3.5 Additional Output

Gulp, by default, will output dropped packets and ring buffer usage only. However, it would
be nice to log how long a capture takes before a packet is dropped. Additionally, it would
be nice to get real-time updates about packet drops in both the kernel and the NIC. Also,
we would like to know how many packets have been captured by the NIC to account for any
potential losses that are not detectable by the system (e.g. cable or switch).

Sevearl additional variables need to be declared in order to monitor these parameters. The
following variables should be declared globally.

int packet_start = 0;
int start_time = O0;

int end_time = O;
int end_time2 =
int packet_drop = O;
int packet_drop2 = 0;

)

N o -

Inside the main function’s final while loop, modify the fprintf statements.

36

fprintf (stderr,
"Time: %d.%d, Kernel Time: %d.%d, If Time: %d.%d, RX: %d, "
+ "Kernel drp: %d, If drp: %d, ring buf: %.11f%%, max’k.11£f%%\n",
push/2, (push%2)*5,
(end_time-start_time)/2, ((end_time-start_time)%2)x*5,
(end_time2-start_time)/2, ((end_time2-start_time)%2)*5,
pcs.ps_recv,
(drop_symb > 0 ? pcs.ps_drop : 0),
pcs.ps_ifdrop,
100.0*(double)used/ (double) (ringsize),
100.0* (double)maxbuffered/(double) (ringsize));

Lastly, a single status message is needed when Gulp is ready for packets. A simple " READY”
message should be printed right before the pcap_loop call in the Reader thread.

fprintf (stderr, "READY!\n");
pcap_loop(handle, -1, got_packet, NULL);

This will make it possible for interface software to call Gulp as a sub-process and wait until
it is fully initialized before commanding packets to arrive.

37

