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Abstract—A circular quadruple-ridged flared horn achieving
almost-constant beamwidth over 6:1 bandwidth is presented.
This horn is the first demonstration of a wideband feed for radio
telescopes which is capable of accommodating different reflector
antenna optics, maintains almost constant gain and has excellent
match. Measurements of stand-alone horn performance reveal
excellent return loss performance as well as stable radiation
patterns over 6:1 frequency range. Physical optics calculations
predict an average of 69% aperture efficiency and 13 K antenna
noise temperature with the horn installed on a radio telescope.

Index Terms—Aperture antennas, horn antennas, radio as-
tronomy, reflector antenna feeds, reflector antennas, ridge
waveguides, ultrawideband antennas.

I. INTRODUCTION

E FFICIENT reflector antenna feeds with bandwidth much
greater than an octave would greatly benefit radio as-

tronomy as well as other applications in communications and
defense systems. The very wide bandwidth provides system
versatility and also enables applications where the simultaneous
use of a wide frequency range is required. The need for wide
bandwidth feeds has been more pronounced in the past several
years because of the availability of transmitter and receiver
amplifiers with multioctave bandwidth.
Some applications for dual-polarized wide bandwidth feeds

within radio astronomy are the following:
1) observations of pulsed (pulsars) and transient radiation
which occur in limited time periods but over many octaves
of frequency (0.6 to 3 GHz and 2 to 12 GHz are desired
bands). The detection sensitivity and timing accuracy can
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be enhanced by receiving systems matched to this wide
spectrum and the pulsar timing observations are of great
interest for the detection of gravitational waves [1];

2) for very long baseline interferometry (VLBI) observations
where large bandwidth (2 to 14 GHz) increases sensitivity
and removes fringe ambiguity [2], [3];

3) for measuring the spectral shape (spectral index) of con-
tinuum radio sources (such as supernova remnants and
quasars) which helps to determine the emissionmechanism
[4];

4) to search for radio spectral lines with large unknown red-
shifts (8 to 50 GHz would be useful);

5) to decrease the cost of large arrays such as the SKA [5], [6]
by reducing the number of expensive cryogenic receiver
required on thousands of antennas.

While there are multiple dual-polarized wideband feed can-
didates for next generation radio telescopes, e.g., [7]–[9], the
quadruple-ridge flared horn (QRFH) described herein possesses
two unique capabilities. Its most distinct feature is the ability to
design the horn to have a nearly constant beamwidth over a
frequency band for nominal 10 dB beamwidths between 50 and
140 . Therefore, this horn could enable broadband frequency
coverage on radio telescopes of different optical configurations.
Secondly, the input impedance of this horn could be designed to
have a nominal value between 50 and 100 Ohms and requires
only one single-ended low-noise amplifier (LNA) per polariza-
tion further reducing costs of complex telescope systems.
Ridged waveguides with constant cross-section in the di-

rection of propagation have previously been analyzed using
magnetic field integral equations [10], [11] demonstrating
possibility of wideband propagation depending on waveguide
geometry such as circular, square or diagonal. In contrast,
theoretical analysis of ridged horns with cross- sections that
flare in the direction of propagation is notably missing from
the literature. Therefore, design and development of broadband
microwave components employing ridged waveguides with
tapered ridges and/or walls have been primarily based on
numerical analysis. Many examples of these components are
available in the literature, e.g., wideband orthomode transducers
(OMTs) [12], [13], commercial dual-ridged horns achieving
decade bandwidth [14], and quad-ridge horns as reported in
[15]–[18].
This article builds upon previous work reported in [19], [20]

by discussing electrical design, fabrication andmeasurements of
a circular quadruple-ridge horn covering 2–12 GHz (see Fig. 1).
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Fig. 1. Circular QRFH covering 2–12 GHz.

Section II focuses on electrical design and analysis of the QRFH
while also briefly discussing mechanical design considerations.
Section III presents measured performance of the quad-ridge
horn in addition to predicted system performance.

II. QUAD-RIDGE FLARED HORN DESIGN AND ANALYSIS

The most important physical parameters of the quad-ridge
horn used in this work are summarized in Fig. 2. The horn side-
wall thickness is not included for clarity; however, the ridge and
sidewall taper are shown. The angle is called the flare angle
and is discussed in detail below.
The remainder of this section discusses the required aperture

field distributions and aperture mode content to achieve constant
beamwidth over 6:1 frequency bandwidth for circular apertures.
Various options for ridge and horn profiles to realize the required
aperture mode distribution are presented. The section concludes
with fabrication considerations.

A. Aperture Mode Content

For aperture antennas such as horns, it is well known that
maintaining constant beamwidth as a function of frequency im-
plies that aperture fields must be tapered at the aperture edges
with increasing frequency [21]. Furthermore, the aperture field
distribution must exhibit circular symmetry if the application
requires circular radiation patterns such as the case here. In the
case of circular apertures, there has been extensive work in the
literature expressing both the aperture field distribution and the
resultant radiation patterns in closed form such as those reported
in [22], [23].
Using the results of [23], the required aperture field distribu-

tions (with uniform phase) to maintain a 10-dB beamwidth of
90 in all azimuthal planes from 2 to 12 GHz are calculated and
are shown in Fig. 3 in steps of 1 GHz as a function of normalized
aperture radius. This figure clearly shows that achieving such
field distributions requires a multitude of modes in the horn.
The aperture mode content required to generate the aperture

field distribution is calculated using the technique outlined in
[24]. The technique relies on the fact that far-field patterns of
all possible modes in a circular aperture horn can be expressed

Fig. 2. (a) Ridge side view and (b) view from bottom of feed looking up. The
dimensions shown in (b) are as-built dimensions of the QRFH in millimeters.
The remaining final dimensions of the QRFH presented herein are: taper length
for the ridges and the sidewall are 156.3 and 151.8 mm, respectively; back-short
depth and width are 7.04 and 10.72 mm, respectively; the ridge and sidewall
aperture radii are, respectively, 83.5 and 85.8 mm; the exponential taper opening
rates (see Section II-B) for the ridges and sidewall are 0.0213 and 0.0219, re-
spectively.

by closed-form equations. These are then used as basis functions
to express the desired far-field patterns. The coefficients of this
expansion constitute the complex mode amplitudes required at
the aperture, the results of this analysis for the aperture field
distribution in Fig. 3 are presented in Fig. 4.
These results show that the mode is the dominant mode

throughout the frequency range albeit with a decreasing relative
power content with increasing frequency. The relative power in
the first four modes, namely , , , and , is
in good agreement with results presented in [24] for an optimum
four-mode horn.
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Fig. 3. Normalized aperture field distribution to achieve 10-dB beamwidth of
90 from 2 to 12 GHz using a circular aperture.

Fig. 4. (a) , (b) mode coefficients to achieve circular radiation
patterns with 10-dB beamwidth of 90 from 2 to 12 GHz using a circular aper-
ture of diameter same as the QRFH presented herein.

It is also noteworthy to point out that even-order or
modes, i.e., are not

present. This is because of the perfect two-fold symmetry of the
aperture field distribution which prohibits even-order modes.
Having established the necessary mode distribution, the ques-

tion of how to achieve it remains. The analysis of mode progres-
sion along the length of the horn is the topic of ongoing research
in our group with the aim of establishing relationship between
mode distributions and geometric parameters. Given the lack of

such an empirical (or theoretical) relationship, the QRFH devel-
opment is driven by numerical simulations.
Numerical electromagnetic analysis of antennas spanning

multioctave bandwidths usually requires long simulation times.
In order to streamline and accelerate this process, an automated
software setup was established early in this research: the
quad-ridge horn geometry is represented by approximately 15
parameters; ridge and horn profiles are generated using these
parameters in MATLAB [25] and uploaded to the electro-
magnetic solver CST Microwave Studio (MWS) [26]. Once a
simulation is completed, MATLAB retrieves results from CST
MWS, performs postprocessing to assess “goodness” of data
and archives results, and generates a new set of parameters
to continue the optimization process. The optimizers used
in this work are the simulated annealing and global search
routines available in MATLAB which have the advantage of
avoiding getting trapped in local minima. The cost function
used involves aperture efficiency (calculated using closed-form
equations), return loss and also total power as compared to an
ideal pattern with the desired edge taper. This automated
software configuration, running on a dedicated workstation
with a graphics processing unit (GPU), has facilitated compila-
tion of an extensive database of quad-ridge horn performance
as a function of horn parameters for more than 10 000 different
geometrical configurations.

B. Exponential Profile

Of all the parameters describing the quad-ridge horn geom-
etry, those that define ridge and sidewall profiles play the most
critical role in determining the performance of the horn. Most of
the prior work on double- or quadruple-ridged horns focuses on
exponential and elliptical profiles for both ridges and sidewall.
On the other hand, many more profiles have previously been
considered in the literature within the context of corrugated or
smooth-wall horn designs [27].
The aforementioned software setup is designed such that the

user could choose any of the profiles listed in [27] separately
for ridges and sidewall. However, the four most promising func-
tions for quad-ridge horns have been found to be: 1) exponen-
tial; 2) elliptical; 3) ; and 4) . The exponential profile is
used for both the ridge and sidewall tapers of the QRFH pre-
sented herein; thus, we solely focus on that profile in this paper.
It is defined as

(1)

where

(2)

and , are, respectively, sidewall radius at the feed point and
aperture; is the exponential opening rate; is the taper length.
The parameter is between and determines whether a
linear taper is added to the profile. The feed point is the point
where electromagnetic signal propagating in the horn couples
to the coaxial line.
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Fig. 5. (a) Side view of the ridge as exponential opening rate is swept from
to of the baseline value , (b) 10 dB beamwidth in ,

45, 90 degree planes (at a constant frequency of 5 GHz) and return loss cutoff
frequency (cutoff threshold defined as ) as a function of the ex-
ponential opening rate of the ridge. , 45, 90 curves are plotted using,
respectively, solid, dash-dotted and dashed lines. Dotted curve with diamond
markers is return loss cutoff frequency.

The parameter most influential on the horn’s radiation perfor-
mance is the exponential opening rate of the ridge profile, . It
needs to be selected such that ridge-to-ridge gap is small enough
to support propagation of the dominant mode throughout the
horn’s length while avoiding excessively large or small opening
rates which deteriorate return loss.
Another important factor to consider in determining is

due to an interesting property of quad-ridged horns, namely
beamwidths in , 45 degree planes are determined mainly
by the flare angle ( of Fig. 2) rather than aperture size, similar
to corrugated horns [28]. -plane beamwidth of the QRFH, on
the other hand, is not as strong a function of the flare angle but
depends more on aperture size; thus, it shows more variation
with frequency.
To illustrate this point, two sets of simulations are carried out

in CST MWS. In the first case, the exponential opening rate is
varied with respect to the as-built value of . Fig. 5(a)

Fig. 6. (a) Side view of the ridge as aperture diameter is swept from to
of the baseline value , (b) 10 dB beamwidth in , 45, 90 de-

gree planes (at a constant frequency of 5 GHz) and return loss cutoff frequency
(cutoff threshold defined as ) as a function of aperture diam-
eter. , 45, 90 curves are plotted using, respectively, solid, dash-dotted
and dashed lines. Dotted curve with diamond markers is return loss cutoff fre-
quency.

shows the simulated ridge profiles with all other parameters
fixed. 10 dB beamwidths in , 45, 90 degree planes at a con-
stant frequency of 5 GHz are plotted in Fig. 5(b). Strong depen-
dence of beamwidth on flare angle is noted in the , 45 de-
gree planes. -plane beamwidth shows a significantly smaller
dependence on the exponential opening rate. Also plotted in the
same figure is return loss cutoff frequency, defined as the lowest
frequency at which return loss crosses and stays above 10 dB
level, which underlines the impact of ridge opening rate on the
lowest usable frequency of the horn.
For the second set of simulations, aperture diameter of the

quad-ridge horn is swept from to of the as-built
value, , while maintaining identical flare angles, which re-
quires scaling of horn’s taper length. Resulting profiles are de-
picted in Fig. 6(a) and (b) plots 10 dB beamwidths and return
loss cutoff frequency which show that aperture size has only a
secondary effect on beamwidth.
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Fig. 7. Detailed view of input coax center conductor connection with opposing
ridge. The other two ridges and sidewall are not shown in Detail A for clarity.

C. Fabrication Considerations

The quad-ridge horn described here has been built in pieces
using a numerically controlled milling machine. The base of the
horn (i.e., around the feed point) is the most critical part in terms
of tolerances on dimensions, locations and orientations of the
ridges. Proper location and orientation of ridges are of utmost
importance to avoid unwanted higher-order mode excitations
due to asymmetry.
A low-loss coaxial air line through one ridge with center con-

ductor connected to the opposite ridge is used to form a balun
and excite the ridge waveguide at the base of the horn. The
connection of the center conductor of this air line to the op-
posite ridge is quite critical. An accurate 0.508 mm diameter
gold-plated gage pin is welded into a short 0–80 threaded stud
which screws into a threaded hole through the opposite ridge. A
set screw from the back of the ridge is then utilized to lock the
thread of the center conductor. The input end of the center con-
ductor plugs into a well-formed socket of a commercial SMA
connector. A small degree of tuning of the feed return loss is
accomplished by turning the threaded rod to adjust the contact
point in the opposite ridge. These details are provided in the
bottom half of Fig. 7.

III. MEASUREMENTS

The radiation patterns of the horn were measured using a
far-field pattern measurement setup on the roof of the electrical
engineering building at California Institute of Technology.
Obstacles on the roof limited the accuracy of the patterns to
the level; but, this is sufficient to determine the main

Fig. 8. Measured (solid) and simulated (dashed) reflection coefficients of, and
measured isolation (dotted) between both polarizations of the circular QRFH.

beam, the first side lobes and performance in a reflector system.
Both co- and cross-polarized radiation patterns were measured
in three azimuthal planes, namely , 45, and 90 , for

(with one degree steps in the main beam)
from 1 to 17 GHz with a frequency resolution of 40 MHz.

A. Scattering Parameters and Radiation Patterns

The circular quad-ridged flared horn covering 2 to 12 GHz is
designed to illuminate the secondary reflector of a 12-m shaped
dual-reflector antenna system. The subtended angle at the feed
is 100 . In order to balance illumination and spillover efficien-
cies, the QRFH was designed with target 10-dB beamwidth of
85–90 .
The measured reflection coefficient of both polarizations of

the circular quad-ridge horn are shown in Fig. 8 along with
the measured isolation between the two polarizations. The mea-
sured isolation is better than 30 dB from 2 to 20 GHz while the
simulated isolation (not plotted for clarity) is better than 40 dB
up to 15 GHz. The return loss is better than 10 dB from 1.95
up to 19 GHz for both ports and significantly better than 15 dB
from 2.5 to 11 GHz, implying any mismatch would only have a
small effect upon system noise.
The measured and the simulated data sets agree reasonably

well with the measured data showing better performance, which
is due in large part to the flexibility of the screw-in center con-
ductor. The measured data, shown in Fig. 8, was collected after
some minor tuning on both ports which helped improve the
return loss beyond 5 GHz. The impact of tuning is more pro-
nounced at higher frequencies (i.e., ) where parasitic
effects, such as center conductor alignment and inductance due
to depth of contact with opposite ridge begin to play a bigger
role.
The normalized radiation patterns of the QRFH are plotted

in Fig. 9 from 2 to 12 GHz in approximately 1 GHz steps in -,
-, and -planes (see Fig. 11 for unnormalized gain versus fre-

quency). Excellent beamwidth stability is noted in both - and
-planes. -plane beamwidth shows more variability—i.e.,

the far-field patterns are not rotationally symmetric—because
of the different boundary conditions on the magnetic fields in
the horn. The radiation patterns of one polarization are plotted
for brevity; however, performance of the other polarization is
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Fig. 9. Measured far-field patterns of the circular QRFH in (a) , (b)
, and (c) planes from 2 to 12 GHz.

virtually identical. In addition to predicting measured return
loss performance quite well, CST MWS does an excellent
job estimating the far-zone radiation patterns of the QRFH as
shown in Fig. 10. This figure also indicates that high-frequency
ripple in measured patterns is an artifact of the far-field range
and not due to the horn.
Another parameter of interest to radio astronomy applica-

tions is the cross-polarization level of the telescope feed. Fig. 11
presents both measured and simulated peak cross-polarization

Fig. 10. (a) Simulated and (b) measured gain versus frequency at angles from
0 to 90 in steps of 10 . The curves are at and are normalized to

.

Fig. 11. The measured and simulated gain of the QRFH (top two curves) and
peak cross-polarization level of the QRFH (in the plane) and the
GGAO telescope when illuminated by the QRFH.

levels of the QRFH in the plane with black curves
which show that average cross-polarization level of the horn is
only about . Also shown in the same figure are cross-
polarization levels in the secondary patterns computed using
physical optics, revealing an average cross-polarization level of

. The unequal - and -plane beamwidth of the QRFH
alone only produces secondary cross-polarization of .
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The cross-polarization performance of the horn is very sensi-
tive to modal content in the horn and could be improved sig-
nificantly (e.g., down to level) once a thorough un-
derstanding of the impact of ridge and sidewall geometry on
the mode conversion within the horn is achieved. For radio as-
tronomy applications sensitive to polarization, the cross-polar-
ization can be measured by observations of sources with known
polarization and then corrected in data processing. An impor-
tant criteria is then the stability of the cross polarization which
we believe will be very high due to the solid metal construction
of the QRFH feed.
The excellent agreement between the CST simulations and

measurements shown thus far instills confidence in our mod-
eling of the QRFH aswell as the database of QRFH performance
as a function of horn parameters generated with the aforemen-
tioned automated software setup. This agreement also enables
the use of the simulated far-zone patterns in estimating the aper-
ture mode content of the QRFH.

B. Aperture Mode Content

The technique outlined in Section II-A is now used to esti-
mate the mode content at the aperture of the quad-ridge horn.
Before proceeding, we note that this is inherently an approx-
imate calculation because the radiation pattern synthesis ap-
proach in [24] assumes that the radiating aperture is large com-
pared to the guide wavelength. This is not true in the lower part
of the QRFH frequency range. This has two effects: 1) the uni-
form phase front at the aperture is not planar; and 2) the reflec-
tions at the aperture, which are ignored, could be important.
Fig. 12 presents the aperture mode analysis results along

with aperture efficiency and its subefficiencies. Parts (a) and
(b) of Fig. 12 plot the fraction of total radiated power in
and modes, respectively. For this analysis, first 150
and 150 modes are considered (specifically, those that are
above cutoff at the aperture at a given frequency). Only the first
six modes are plotted in Fig. 12 for clarity, which is justified
because the remaining modes carry little to no power over
the operating frequency range. These plots show that is
indeed the dominant mode at all frequencies and its behavior
is similar to the required mode amplitude, albeit with
a faster decrease in relative power content with increasing
frequency. The mode carries roughly the same fraction
of the total power regardless of frequency. It is below cutoff
at the feed point of the horn all the way up to approximately 8
GHz which implies that it is generated by curvature of ridges
and sidewall and is not excited significantly at the feed point.
This, combined with the absence of even-order azimuthal

modes, is an important result that suggests that ridges do not
significantly alter themode conversion expected from a smooth-
walled horn with the identical profile. In particular, it was shown
in [30] that horn diameter variations can only cause coupling be-
tween modes of same azimuthal order.
The efficiencies in Fig. 12(c) are calculated using the sim-

ulated far-field patterns by closed-form equations from [29],
which are intended for prime focus illumination of a reflector;
moreover, they do not take into account shaping of the reflector
surfaces. Nonetheless, they are presented here for two purposes:

Fig. 12. Percentage of total power in (a) coefficients and (b)
coefficients; (c) Aperture efficiency and various subefficiencies which are cal-
culated using closed-form equations from [29]. Data is based on simulated per-
formance. , , , coefficients from Fig. 4 are reproduced
with diamond markers for ease of comparison.

1) they provide a mean to assess contributions of various subef-
ficiencies to the overall horn performance; and 2) they capture
most of the important features in the far-field radiation patterns.
The illumination efficiency shows a dip around 9.5 GHz

which correlates very well with a similar dip observed in
Fig. 10. It also corresponds to a small excitation of higher-order

modes in Fig. 12(b). These modes have the effect of
narrowing the main beam in - and -planes which manifests
itself as reduced illumination efficiency, but increased BOR1
efficiency. Due again to this higher-order mode excitation,
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Fig. 13. Predicted aperture efficiency and antenna noise temperature of the cir-
cular QRFH designed for the GGAO 12 m telescope. Both are calculated using
physical optics at an elevation angle of 48 . Losses due to strut and subreflector
blockage and r.m.s. surface error are not included in the PO calculations. The
sky noise temperature is calculated per the method outlined in [32], and is 5.5
K at 4 GHz and 6.5 K at 10 GHz.

cross-polarization level in the plane increases which
can be deduced from polarization sidelobe efficiency curve. A
similar dip just below 8 GHz in the aperture efficiency is due
mainly to beam narrowing in the -plane pattern resulting in
both reduced illumination and BOR1 efficiencies. Section IV
presents a more realistic aperture efficiency prediction calcu-
lated using physical optics.

C. Predicted System Performance

The shaped dual-reflector radio telescope, for which the
QRFH presented herein is designed, was built with optics
designed at the Jet Propulsion Laboratory [31] and mechanical
design and construction by Patriot/Cobham. The primary re-
flector has a diameter of 12 meters and the full subtended angle
to the secondary reflector is 100 . It is located at the Goddard
Geophysical and Astronomical Observatory (GGAO), where
it serves as a radio telescope for a geodetic VLBI application
requiring 50% aperture efficiency and 50 Kelvin system noise
temperature.
A custom physical optics (PO) program, which takes into ac-

count shaping of both reflectors, was used to compute both aper-
ture efficiency and antenna noise temperature based upon the
measured QRFH patterns. The results for both linear polariza-
tions are shown in Fig. 13.
The predicted aperture efficiency is up to 10 GHz

and stays above 50% up to 12 GHz. Aperture efficiency aver-
aged over the entire band is 69%. An important consideration
for radio telescopes is phase center stability over the frequency
band of interest. The phase center of the QRFH moves approxi-
mately 5 cm from 2 to 12 GHz, obtained frommeasured far-field
patterns. Because the PO calculations are carried out for a fixed
feed position, the effect of this phase center variation is taken
into account. The QRFH is focused at the high end of its fre-

quency band which minimizes loss due to phase center varia-
tion as the axial defocusing at the low end of the band is small
compared to a wavelength.
The predicted antenna noise temperature is less than 20 K

from 3 to 12 GHz and less than 30 K below 3 GHz. Estimating
the receiver noise temperature to be around 23 K (calibration
coupler noise contribution noise temperature

cable loss 5 K), the QRFH-based receiver is expected
to meet the 50 K and 50% specifications over the en-
tire frequency band. The simulated loss in the horn is less than
0.1 dB corresponding to noise contribution and is thus
negligible. This is because of the solid metal construction and
existence of wide surfaces for current flow. Our estimate of the
LNA contribution to receiver noise temperature is conservative.
Current state-of-the-art cryogenic LNAs developed in our group
and in use at GGAO achieve about 6 K over much of this band
[33]. A new dewar, specifically designed for the QRFH-based
receiver, is presently under construction.

IV. CONCLUSION

A circular quadruple-ridged flared horn is presented that
achieves 6:1 frequency bandwidth while maintaining almost
constant gain. The measured radiation patterns of the QRFH
display very stable beamwidth versus frequency in - and
-planes while the -plane patterns show more variation.

The horn exhibits excellent match to 50 from 2 to 19 GHz
which is well beyond the target frequency range. Both radiation
patterns and scattering parameters are in excellent agreement
with simulations. Predicted system performance of the QRFH,
based on measured patterns and using physical optics, show an
average aperture efficiency and antenna noise tempera-
ture less than 30 K over the entire band with an average of 13
K.
The average cross-polarization performance of

needs improvement but is typical for wideband feeds with
greater than 2:1 frequency ratio currently considered for radio
astronomy applications. Modal analysis of the circular QRFH
aperture demonstrates that the horn comes fairly close to
generating required modes at the aperture to achieve constant
beamwidth; however, improvement is necessary to ensure more
stable beamwidth versus frequency, especially in the -plane.
Further improvements to the cross-pol levels as well as un-

equal principal plane beamwidths necessitate a better under-
standing of the mode conversion throughout the horn. Under-
standing progression of all pertinent modes in the horn with the
goal of establishing relationships between ridge/sidewall pro-
files and mode coupling coefficients and their impact on the
quad-ridge horn performance is the topic of ongoing research
in our group.
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