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[1] Digital quantization of signals prior to processing results in the insertion of a
component of noise resulting from the finite number of quantization levels. In radio
astronomy, for example, this is important because the number of levels tends to be limited
by increasing sample rates, required by the use of increasingly wide bandwidths. We are
here concerned with signals with Gaussian amplitude distribution that are processed by
cross correlation. Quantization efficiency is the relative loss in signal-to-noise ratio
resulting from the quantization process. We provide a method of calculating the
quantization efficiency for any number of uniformly spaced levels, as a function of the
level spacing, using formulas that are easily evaluated with commonly used mathematical
programs. This enables a choice of level spacing to maximize sensitivity or to provide a
compromise between the sensitivity and the voltage range of the input waveform.
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1. Introduction

[2] The process of digital quantization of an analog
waveform involves addition of an error component
resulting from the finite number of bits in the digital
representation. There is thus an increase in the uncer-
tainty of any measurement using the digitized wave-
form, and hence a degradation of the signal-to-noise
ratio (sensitivity) of the measurement. An early general
analysis of quantization effects is given by Bennett
[1948]. In radio astronomy, for example, cross correla-
tions are formed of the received waveforms from spaced
antennas or from a single antenna with different time
delays. The probability distribution of the analog wave-
forms is close to Gaussian and the signal-to-noise ratio
of the digitally correlated data, as a fraction of that for
an equivalent ideal analog system, is referred to as the
quantization efficiency hQ. Expressions for hQ for three-
and four-level quantization in radio astronomy were
first given by Cooper [1970]: for later derivations, see,
e.g., the discussion by Thompson et al. [2001] and
associated references. With advances in digital electron-
ics, use of larger numbers of levels has become
practical, and some analysis of performance in such
cases is given by Jenet and Anderson [1998]. In

deriving general expressions for hQ we have used an
approach which is based on the consideration that the
quantization efficiency is equal to the variance of the
original analog noise voltage divided by the equivalent
noise variance of the digitized signal at one input of a
correlator. Note that this applies to the situation in
which the cross correlation of the signals at the two
correlator inputs tends toward zero, which is generally
the important case in radio astronomy. For this condi-
tion, we derive exact expressions for any number of
levels using formulas that can easily be evaluated using
widely available mathematical programs. Approximate
expressions for hQ for eight and higher numbers of
levels are given by Thompson et al. [2001, pp. 273–
276]. However, the quantization inequality (x-y) is used
as an approximation for the quantization noise; that is,
in effect a (see section 2) is taken to be 1. This is a useful
approximation if the number of quantization levels is not
too small, but it is now possible to provide exact expres-
sions by using a1 to select the random component.

2. Derivation of the Formulas

[3] Let x represent the voltage of the signal at the
quantizer input. In radio astronomy such waveforms
generally have a Gaussian probability distribution with
variance s2. Let y represent the quantized values of x.
The difference x-y represents an inequality introduced
by the quantization. The inequality contains a compo-
nent that is correlated with x, and an uncorrelated
component that behaves as random noise. To separate
these, consider the correlation coefficient between x and
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D = x�ay, where a is a scaling factor. The correlation
coefficient is

hxDi
xrmsDrms

¼ hx2i � ahxyi
xrmsDrms

: ð1Þ

[4] Here the angle brackets h i indicate the mean value.
If a = hx2i/hxyi, then the correlation coefficient is zero,
and D represents purely random noise. We refer to this
random component as the quantization noise, q, equal to
x � a1y where a1 = hx2i/hxyi. Note that for each sample,
x and y have the same sign so xy is always positive.
Without loss of generality, we take s2 = hx2i = 1 and use
a1 = 1/hxyi. Thus the variance of the quantization noise
is

hq2i ¼ h x� a1yð Þ2i ¼ a2
1hy2i � 1; ð2Þ

and since the total variance of the digitized signal is 1 +
hq2i, we obtain

hQ ¼ 1

1þ hq2ið Þ ¼
1

a2
1hy2i

¼ hxyi2
hy2i : ð3Þ

[5] As a verification of this result, consider the case of
two-level quantization, which was particularly important
in early radio astronomy correlators. Here y is assigned
the value of 1when x > 0, and�1when x < 0. Thus hy2i = 1
and hxyi = hjxji. Then we have

hjxji ¼ 2
ffiffiffiffiffiffi

2p
p

Z 1

0

x e�x2=2dx ¼
ffiffiffi

2

p

r

; ð4Þ

and from equation (3) hQ = 2/p, which is a well-known
result that follows from a study by Van Vleck and
Middleton [1966]. These authors also give the correction
for linearity that can be applied to the autocorrelation or
cross-correlation terms produced after quantization with
two levels, and similar corrections for larger numbers of
levels have been derived elsewhere. These corrections
will scale the RMS level by the same factor as the signal
within a given correlation term, so the resultant signal-to-
noise ratio is unaffected by the linearity correction. An
interesting historical detail concerning this reference is
that the work was done during World War II and
described in Radio Research Laboratory Report 51 of
Harvard University, dated 1943, at which time it was
classified.
[6] To apply equation (3) to cases with larger numbers

of levels we need general expressions for hxyi and hy2i.
Values of xy and y2 are determined by the sample values
of x, so the mean values over many samples can be
expressed in terms of the Gaussian probability function
of x. We consider only cases in which the spacing
between adjacent quantization thresholds is constant,
and begin with even numbers of levels as in the 8-level
case in Figure 1. We Define � (measured in units of s) as
the spacing in the x coordinate between adjacent level
thresholds, and N as half the number of levels. We first
determine hxyi. The values of x that fall within the
quantization level between m� and (m + 1)� are assigned

Figure 1. Examples of quantization characteristics with
(top) an even number of levels (eight) and (bottom) an odd
number of levels (nine). In each case,N = 4. Units on both
axes are equal to �. The vertical sections of the staircase
functions represent the thresholds between the levels.
Note that for even numbers of levels, the thresholds occur
at integral values on the abscissa, whereas for odd
numbers of levels, the thresholds occur at values that are
an integer ±1

2
.
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the value y = (m + 1/2)�. (Since the digitized values are
specified in units of �, choice of � introduces a gain
factor, but this does not affect the signal-to-noise ratios
with which we are concerned.) The contribution to hxyi
from this level is

mþ 1

2

� �

�
1
ffiffiffiffiffiffi

2p
p

Z mþ1ð Þ�

m�

x e�x2=2 dx: ð5Þ

[7] The contribution from the level between �m� and
�(m + 1)� is the same as the expression above, so to
obtain hxyi we sum the integrals for the positive levels
and include a factor of two:

hxyi ¼
ffiffiffi

2

p

r

X

N�2

m¼0

mþ 1

2

� �

�

Z mþ1ð Þ�

m�

xe�x2=2 dx

 !"

þ N � 1

2

� �

�

Z 1

N�1ð Þ�
xe�x2=2 dx

#

: ð6Þ

[8] The summation term contains one integral for each
positive quantization level except the highest one. The
integral on the lower line covers the range of x above the
highest threshold, for which the assigned value is y =
(N � 1/2)�. Then since

R

xe�x2/2dx = �e�x2/2, equation
(6) reduces to

hxyi ¼
ffiffiffi

2

p

r

�
1

2
þ
X

N�1

m¼1

e�m2�2=2

 !

: ð7Þ

[9] To evaluate the variance of y, again consider first
the contribution from values of x that fall between m�
and (m + 1)�. The variance of y for all values of x within
this level is

mþ 1

2

� �2

�2
1
ffiffiffiffiffiffi

2p
p

Z mþ1ð Þ�

m�

e�x2=2 dx: ð8Þ

[10] For negative x we again include a factor of 2, sum
over all positive quantization levels below the highest
threshold, and add a term for the range of x above the
highest threshold. Thus the total variance of y is

hy2i ¼
ffiffiffi

2

p

r

X

N�2ð Þ

m¼0

mþ 1

2

� �2

�2
Z mþ1ð Þ�

m�

e�x2=2 dx

 !"

þ N � 1

2

� �2

�2
Z 1

N�1ð Þ �
e�x2=2 dx

#

: ð9Þ

[11] The right-hand side of equation (9) can be sim-
plified by expressing the integrals in terms of the error
function erf(): erf(x/

ffiffiffi

2
p

) =
ffiffiffiffiffiffiffiffi

2=p
p

R x

0
exp(�t2/2) dt. Then,

using equations (3) and (7), we obtain

hQ 2Nð Þ ¼
2
p

1
2
þPN�1

m¼1 e�m2�2=2
� �2

N � 1
2

� �2�2
PN�1

m¼1 m erf m�
ffiffi

2
p
� � : ð10Þ

[12] For the case where the number of levels is odd the
thresholds occur at values that are an integer ± 1

2
, as in

the 9-level case in Figure 1. Values of x that fall within
the quantization level between (m � 1

2
)� and (m + 1

2
)� are

assigned the quantized value m�. We represent the odd
level number by 2 N + 1. Then following the steps as
outlined for the even-number levels we obtain

hQ 2Nþ1ð Þ ¼
2
p

PN
m¼1 e

� m�1
2ð Þ2�2=2� �2

N 2 � 2
PN

m¼1 m� 1
2

� �

erf
m�1

2
�ð Þ
ffiffi

2
p

� � : ð11Þ

3. Results

[13] For even and odd numbers of levels equations (10)
and (11), respectively, provide values of hQ from starting
values of � and N . They can be evaluated rapidly in
Mathcad, Mathmatica or similar programs. Examples of
results derived are shown in Table 1. Values of � are in
units of s and are chosen empirically to maximize hQ.
Curves showing hQ as a function of � are shown in
Figure 2. As � ! 0 the output of the quantizer depends
only on the sign of the input, so the curves meet the
ordinate axis at the two-level value of hQ, 2/p. As �
increases, more of the higher (positive and negative)
levels contain only values in the extended tails of the
Gaussian distribution, so the number of levels that make

Table 1. Values of � and hQ for Several Numbers of Levels

Number of Levels N � hQ

2 0.636620
3 1 1.224 0.809826
4 2 0.995 0.881154
8 4 0.586 0.962560
9 4 0.534 0.969304
16 8 0.335 0.988457
32 16 0.188 0.996505
64 32 0.104 0.998960
128 64 0.0573 0.999696
256 128 0.0312 0.999912

RS3022 THOMPSON ET AL.: QUANTIZATION EFFICIENCY

3 of 5

RS3022



a significant contribution to the output decreases, and the
curves merge together. The curves for even level numb-
ers move asymptotically to the two-level value, and
curves for odd level numbers move toward zero. In
situations where there are different numbers of levels
used for the two inputs of a correlator, the output signal-
to-noise ratio is proportional to the geometric mean of
the input signal-to-noise ratios, i.e., to the geometric
mean of the quantization efficiencies.
[14] If the constant voltage spacing between adjacent

thresholds for both input and output values is not
maintained, the individual levels can be adjusted to
obtain an improvement in hQ of a few tenths of a percent,
decreasing with increasing number of levels. Level
values optimized in this way are given by Jenet and
Anderson [1998] for several numbers of levels. A highly
detailed analysis of quantization effects which also
includes threshold optimization is in preparation (F. R.
Schwab, Optimal quantization functions for multi-level
digital correlators, manuscript in preparation, 2007).
[15] In the analysis by Jenet and Anderson [1998] the

assigned value for a signal that falls between adjacent
level thresholds is equal to the RMS value of the
corresponding Gaussian distribution between these

thresholds. In the present case we want to be able to
maintain linearity of response over voltage ranges which
include non-Gaussian interfering signals (see section 4),
and have used assigned values that are the mean of the
threshold values between which the input voltage falls.
This is also generally applicable to commercially avail-
able digital quantizers. Jenet and Anderson adjust the
quantization parameters to minimize the RMS difference
between the unquantized and quantized values of the
input waveforms, whereas we have adjusted the spacing
between thresholds, �, to maximize the quantization
efficiency. Differences in the results, however, are small
and comparison of hQ values in Table 1 with corresponding
values by Jenet and Anderson shows that our value for
4 levels is 1.9% higher, but in other cases differences are
only in the fourth or higher decimal places. Jenet and
Anderson list values of a parameter l which is equal to
1 – hQ.

4. Choice of Level-Threshold Spacing

[16] Often the requirement for calculation of the quan-
tization efficiency is simply to find the value of � that
provides the maximum sensitivity for a particular num-
ber of levels. In recent systems, however, � is sometimes
chosen so that signal voltages much higher than the RMS
system noise can be accommodated within the range of
the quantizer. This preserves an essentially linear
response to interfering signals so that they can subse-
quently be mitigated by filtering or other processes. For
example, with 256 levels (8-bit representation) and � =
0.0312 to maximize sensitivity, ±128 levels corresponds
to ±4s, i.e., 6 dB above the RMS system level. However
with � = 0.25, equation (10) shows that hQ = 0.9948 and
±128 levels then corresponds to 30 dB above the RMS
level. Thus with 256 levels, a sacrifice of 0.5% in signal-
to-noise ratio can permit an increase of 24 dB in the
headroom above the interference-free power level. Such
an arrangement is particularly useful at the lower frequen-
cies used in radio astronomy observations where interfer-
ence is common and bandwidths used are narrower
allowing larger numbers of levels without incurring
undesirably high bit rates.

[17] Acknowledgment. The National Radio Astronomy
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operated under cooperative agreement by Associated Univer-
sities, Inc.
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