UNIDRIVE SP TERMINAL DIAGRAM

TERMINAL DESCRIPTION

Pin\#	Function ${ }^{1}$	Type/Description	Notes
1	OV Common		
2	+24 VDC External Input	Back up Power Supply for Control	60W, 24 VDC
3	ov Common	Common for External Analog Devices	
4	+10 VDC User Supply	Reference Supply	10 mA max
5	Analog Input 1 (Local Frequency/Speed Reference)	Differential Analog Input, Non-inverting Input, 16 bit	$\begin{aligned} & \pm 10 \mathrm{VDC} \\ & 100 \mathrm{kOhms} \end{aligned}$
6	Analog Input 1 (Local Frequency/Speed Reference)	Differential Analog Input, Inverting Input 16 bit	$\begin{aligned} & \pm 10 \mathrm{VDC} \\ & 100 \mathrm{k} \text { Ohms } \end{aligned}$
7	Analog Input 2 (Remote Frequency/Speed Reference)	Single-ended Analog Input 10 bit	$\begin{aligned} & \pm 10 \mathrm{VDC}, 100 \mathrm{k} \\ & \text { Ohms or } 4-20 \mathrm{~mA} \text {, } \\ & 200 \text { Ohms (2) } \end{aligned}$
8	Analog Input 3	Single-ended Analog Input 10 bit	$\begin{aligned} & \pm 10 \mathrm{VDC}, 100 \mathrm{k} \\ & \text { Ohms or } 4-20 \mathrm{~mA} \text {, } \\ & 200 \text { Ohms (2) } \end{aligned}$
9	Analog Output 1 (Frequency/Speed Monitor)	Single-ended Analog Output, Bi-polar, 10 bit	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { or } \\ & 0-20 / 4-20 \mathrm{~mA} \text { (2) } \end{aligned}$
10	Analog Output 2 (Motor Torque Monitor)	Single-ended Analog Output, Bi-polar, 10 bit	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { or } \\ & 0-20 / 4-20 \mathrm{~mA} \text { (2) } \end{aligned}$
11	ov Common	Common External Analog Signals	

Pin\#	Function (1)	Type/Description	Notes
21	ov Common		
22	+24 VDC User Output	User Supply	200 mA max
23	OV Common	Common for External Digital Inputs	
24	Digital I/O 1 (Zero Speed Output)	Digital Input/Output	0 to 24 VDC input, or 1 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ max output
25	Digital I/O 2 (Reset Input) 100 mA max output	Digital Input/Output	0 to 24 VDC input, or 1 to 24 VDC
26	Digital I/O 3 (Run Forward Input)	Digital Input/Output	0 to 24 VDC input, or 1 to 24 VDC, 100 mA max output
27	Digital Input (Run Reverse)	Digital Input	0 to 24 VDC , 7.5 k Ohms
28	Digital Input (Local/Remote)	Digital Input	0 to 24 VDC , 7.5 k Ohms
29	Digital Input (Jog)	Digital Input	0 to 24 VDC, 7.5 k Ohms
30	ov Common	Common for External Digital Inputs	
31	Safe Torque Off Input (drive enabled)	Digital Input	0 to 24 VDC, $1 \mu \mathrm{sec}$ sample
41	Status Relay (Drive Healthy)	Normally Open	$240 \mathrm{VAC}, 2 \mathrm{~A}$ resistive
42	Status Relay (Drive Healthy)	Normally Open	240 VAC, 2A resistive

[^0]
UNIDRIVE SP SPECIFICATIONS

Environment

Ambient Operating
Temperature
Cooling method
Humidity

Storage Temperature
Altitude

Vibration
Mechanical Shock
Enclosure

Electromagnetic Immunity

Electromagnetic Emissions

Voltage

Phase
Phase Imbalance Tolerance Frequency
Input Displacement
Power Factor

Carrier Frequency

Output Frequency
Output Speed
Frequency Accuracy
Frequency Resolution
Analog Input Resolution
Serial Communications

Braking

Control Power Ride Through

DC Bus
Undervoltage Trip
DC Bus
Overvoltage Trip MOV Voltage Transient Protection Drive Overload Trip
0° to $40^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
0° to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ with derating
Forced convection
95\% maximum non-condensing at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
-40° to $50^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
to $3000 \mathrm{~m}(9,900 \mathrm{ft})$. Derate 1% per $100 \mathrm{~m}(328 \mathrm{ft})$ between $1000 \mathrm{~m}(3280 \mathrm{ft})$ and 3000 m (9,900 ft).

Tested in accordance with IEC 68-2-34
In accordance with IEC 68-2-27
NEMA 1 (IP 20), NEMA 12 (IP 54) through panel mounting
In compliance with IEC801 and EN50082-2, and complies with EN61800-3 with built-in filter

In compliance with EN50081-2 when the recommended RFI filter is used and EMC installation guidelines are followed

AC Supply Requirements

200 to 240 VAC $\pm 10 \%$
380 to 480 VAC $\pm 10 \%$
500 to 575 VAC $\pm 10 \%$
500 to 690 VAC $\pm 10 \%$
$3 \varnothing$ (SP size Zero) 200-240V $1 \varnothing$ or $3 \varnothing$)
2% negative phase sequence (equivalent to 3% voltage imbalance between phases)
48 to 65 Hz
0.93

Control

3, 4, 6, 8, 12,16 kHz - panel mounted drives $3,4,6 \mathrm{kHz}$ - Free Standing and SPM drives
0 to 3000 Hz (Open loop)
0 to 40,000 RPM (Closed loop)
$\pm 0.01 \%$ of full scale 0.001 Hz

10 Bit + sign (Qty 2); 16 Bit + sign (Qty 1)

2-wire RS485
4-wire RS232 or RS485 with SM-APPS module Protocol is ANSI x 3.28-2.5-A4, or Modbus RTU Baud rate 300 to 115,200.
DC injection braking (stopping and holding) standard. Dynamic braking transistor standard.
Up to 1 second depending on inertia and decel time

Protection

175 / 350 / 435 VDC
(approximately 124 / 247 / 307 VAC line voltage)
415 / 830 / 990 VDC
(approximately 293 / 587 / 700 VAC line voltage)
160 Joules, 1400 VDC clamping
(Line to line and line to ground)
Current overload value is exceeded.
Programmable for Normal Duty or Heavy Duty, Open loop or Closed loop operation
Instantaneous Overcurrent Trip Phase Loss Trip
225% of drive rated current DC bus ripple threshold exceeded

Overtemperature Trips

Short Circuit Trip
Ground Fault Trip
Motor Thermal Trip Protects against output phase to ground fault Electronically protects the motor from overheating due to loading conditions

Approvals \& Listings

UL, cUL UL File \#E171230
IEC Meets IEC Vibration, Mechanical Shock and Electromagnetic Immunity Standards
CE Designed for marking
NEMA NEMA 1 enclosure type
VDE Meets VDE Electromagnetic Emissions Standards
ISO 9002 Certified Manufacturing Facility

DIMENSIONS

Drive heatsink, control board, and option module(s) monitoring
Protects against output phase to phase fault

[^0]: (1) Values in (parenthesis) designate default functions.
 (2) 0-20, 4-20 mA modes are also available. See Unidrive SP User Guide.

