Data Reduction and Analysis Techniques

Ronald J. Maddalena

www.nrao.edu/~rmaddale/Education

Continuum - Point Sources
On-Off Observing

- Observe blank sky for 10 sec
- Move telescope to object & observe for 10 sec
- Move to blank sky & observe for 10 sec
- Fire noise diode & observe for 10 sec
- Observe blank sky for 10 sec
Continuum - Point Sources

On-Off Observing

- **Known:**
 - Equivalent temperature of noise diode or calibrator (T_{cal}) = 3 K
 - Bandwidth ($\Delta \nu$) = 10 MHz
 - Gain = 2 K / Jy

- **Desired:**
 - Antenna temperature of the source (T_A)
 - Flux density (S) of the source.
 - System Temperature (T_s) when OFF the source
 - Accuracy of antenna temperature (σ_{T_A})
Continuum - Point Sources

On-Off Observing

\[T_{\text{reference}} = \frac{T_{\text{cal}} \cdot P_{\text{cal, off}}}{P_{\text{cal, on}} - P_{\text{cal, off}}} \]

20 K

\[T_{\text{signal}} = \frac{T_{\text{cal}} \cdot P_{\text{signal}}}{P_{\text{cal, on}} - P_{\text{cal, off}}} \]

26 K

\[T_A = T_{\text{signal}} - T_{\text{reference}} = \frac{T_{\text{cal}}}{P_{\text{cal, on}} - P_{\text{cal, off}}} \cdot \left(P_{\text{signal}} - P_{\text{cal, off}} \right) \]

6 K

\[\sigma_{T_A} = \frac{T_A}{\Delta t} \]

\[\text{SNR} = 3000 \]
Continuum - Point Sources

On-Off Observing – noise estimate

\[
T_s = \frac{T_{\text{cal on}}}{P^\text{reference}_{\text{cal on}}} - \frac{T_{\text{cal off}}}{P^\text{reference}_{\text{cal off}}} \left(P_{\text{signal}}^{\text{cal off}} - P_{\text{reference}}^{\text{cal off}} \right)
\]

\[
\sigma_{T_s}^2 = \sum \left(\frac{\partial T_s}{\partial P} \right)^2 \sigma_P^2 = \left(\frac{\partial T_s}{\partial P_{\text{signal}}} \right)^2 \sigma_{P_{\text{signal}}}^2 + \left(\frac{\partial T_s}{\partial P_{\text{reference}}} \right)^2 \sigma_{P_{\text{reference}}}^2 + \left(\frac{\partial T_s}{\partial P_{\text{cal on}}} \right)^2 \sigma_{P_{\text{cal on}}}^2
\]

\[
\sigma_{T_s}^2 = \left(\frac{T_{\text{cal on}}}{P^\text{reference}_{\text{cal on}}} - \frac{T_{\text{cal off}}}{P^\text{reference}_{\text{cal off}}} \right)^2 \left(\sigma_{P_{\text{signal}}}^2 + \sigma_{P_{\text{reference}}}^2 \right) + \left(\frac{T_{\text{cal on}}}{P^\text{reference}_{\text{cal on}}} - \frac{T_{\text{cal off}}}{P^\text{reference}_{\text{cal off}}} \right)^2 \left(\sigma_{P_{\text{cal on}}}^2 + \sigma_{P_{\text{cal off}}}^2 \right)
\]

\[
\left(\frac{1}{\text{SNR}} \right)^2 = \left(\frac{\sigma_{T_s}}{T_s} \right)^2 = \left[\left(\frac{P_{\text{reference}}^{\text{cal on}}}{P_{\text{reference}}^{\text{cal off}}} - \frac{P_{\text{cal on}}^{\text{cal off}}}{P_{\text{cal off}}^{\text{cal off}}} \right)^2 + \left(\frac{P_{\text{signal}}^{\text{cal off}}}{P_{\text{cal off}}^{\text{cal off}}} - \frac{P_{\text{cal on}}^{\text{cal off}}}{P_{\text{cal off}}^{\text{cal off}}} \right)^2 \right] \cdot \left(\frac{1}{\Delta V \cdot t} \right)
\]

\[
\text{SNR} = \frac{1}{\sqrt{103+30 \cdot (10^4)}} \approx 900 \quad \text{(Not 3000!)}
\]

Assumptions:

“Classical” Radiometer equation assumes:

- Narrow bandwidths,
- Linear power detector,
- \(T_A << T_s \),
- Noise diode temperature \(<< T_s \),
- \(t_{\text{reference}} = t_{\text{signal}} \),
- \(t_{\text{cal on}} = t_{\text{cal off}} \),
- Blanking time \(<< t_{\text{signal}} \),
- No data reduction!
Phases of an Observation

Total Power

• $T_{\text{cal}} = 4 \text{ K}$
• $T_s = 100 \text{ K}$

• $\sigma_{\text{theor}} = 0.1 \text{ K}$
• $\sigma_{\text{meas}} = 1 \text{ K}$

• Shapes very similar
• Excess noise from atmospheric fluctuation
Phases of a Observation

Beam Switched Power
Phases of a Observation

Double Beam Switched Power

Continuum - Point Sources

Beam-Switched Observation

\[T_{S_{\text{reference}}} (i) = \frac{T_{\text{cal}} (i) - P_{\text{cal}_{-\text{off}}} (i)}{P_{\text{cal}_{-\text{on}}} (i) - P_{\text{cal}_{-\text{off}}} (i)} \left(\frac{P_{\text{cal}_{-\text{on}}} (i) + P_{\text{cal}_{-\text{off}}} (i)}{2} \right) \]

\[T_{S_{\text{signal}}} (i) = \frac{T_{\text{cal}} (i) - P_{\text{cal}_{-\text{off}}} (i)}{P_{\text{cal}_{-\text{on}}} (i) - P_{\text{cal}_{-\text{off}}} (i)} \left(\frac{P_{\text{signal}_{-\text{on}}} (i) + P_{\text{signal}_{-\text{off}}} (i)}{2} \right) \]

\[T_{A} = \frac{T_{S_{\text{signal}}} (i) - T_{S_{\text{reference}}} (i)}{2} \]
Continuum - Point Sources
On-The-Fly Observation

If total power:

\[T_S(i) = \frac{\left(\frac{T \text{_cal}}{P \text{_cal_on}(i) - P \text{_cal_off}(i)} \right)}{2} \left(P \text{_cal_on}(i) + P \text{_cal_off}(i) \right) \]

If beam-switching (switched power):

\[T_S\text{_reference}(i) = \frac{\left(\frac{T \text{_cal}}{P \text{_cal_on}(i) - P \text{_cal_off}(i)} \right)}{2} \left(P \text{_cal_on}(i) + P \text{_cal_off}(i) \right) \]

\[T_S\text{_signal}(i) = \frac{\left(\frac{T \text{_cal}}{P \text{_cal_on}(i) - P \text{_cal_off}(i)} \right)}{2} \left(P \text{_cal_on}(i) + P \text{_cal_off}(i) \right) \]

\[T_A(i) = T_S\text{_signal}(i) - T_S\text{_reference}(i) \]
Baseline Fitting
Polynomials

- Set order of polynomial
- Define areas devoid of emission.

- Creates false features
- Introduces a random error to an observation

\[\sigma_{\text{Peak}}^2 = \sigma_{T_a}^2 + \sigma_{\text{Polynomial}}^2 \]

Why Polynomials?

Continuum - Point Sources
Gaussian Fitting

- Define initial guesses
- Set flags to fit or hold constant each parameter
- Set number of iterations
- Set convergence criteria

- Fitted parameters
- Chi-square of the fit
- Parameter standard deviations.

- Restrict data to between the half power points for fitting to a telescope’s beam
- Multi-component fits should be done simultaneously
Continuum - Point Sources
Gaussian Fitting

Where is noise the highest?

- σ changes across the observation.
- Weights ($1/\sigma^2$) for least-square-fit changes across the observation.
- For strong sources, should worry about using proper weights in data analysis.

Where is noise the lowest?

Template Fitting

- Create a template:
 - Sufficient knowledge of the telescope beam, or
 - Average of a large number of observations.
- Convolve the template with the data => x-offset.
- Shift by the x-offset.
- Perform a linear least-square fit of the template to the data:

Always try to fit physically-meaningful functions
Averaging Data / Atmosphere

- T_A changes due to atmosphere emission.
- Use weighted average with weights $= 1/\sigma^2$

$$\langle T_A \rangle = \frac{\sum T_i \frac{1}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2}} \quad \sigma_{avgr} = \frac{1}{\sqrt{\sum \frac{1}{\sigma_i^2}}}$$

- T_A changes due to atmosphere opacity.
- Opacity from the literature or theory, from a tipping radiometer, from atmospheric vertical water vapor profiles, or by “tipping” the antenna

$$T_A^* = T_A \cdot e^{\tau A / \sin(e)} \quad \sigma_{TA}^* = \sigma_{TA} \cdot e^{\tau A / \sin(e)}$$

Gain Correction

$$T_A^* = T_A^*/\eta_A \quad \text{or} \quad T_B^* = T_A^*/\eta_M$$
$$\sigma_{TA}^* = \sigma_{TA}^*/\eta_A \quad \text{or} \quad \sigma_{TB}^* = \sigma_{TA}^*/\eta_M$$
Continuum - Extended Sources
On-The-Fly Mapping

- Telescope slews from row to row. Row spacing: ~0.9 \(\lambda / 2D \)
- A few samples /sec.
- Highly oversampled in direction of slew <0.3\(\lambda / 2D \)
- Could be beam switching

- Convert Power into \(T_S \).
- Fit baseline to each row?
- Grid into a matrix

Continuum - Extended Sources
On-The-Fly Mapping - Common Problems

- Striping (Emerson 1995; Klein and Mack 1995).
- If beam-switched, Emerson, Klein, and Haslam (1979) to reconstruct the image.
- Make multiple maps with the slew in different direction.
GBT Continuum Images – Rosette

The Rosette at 8.4GHz (GBT Oct 24, 2002)

GBT Continuum Images – M17

Omega Nebula 8.4GHz, Feb 9, 2002
GBT Continuum Images – W3

GBT Continuum Images - Orion
Spectral-line - Point Sources
On-Off Observing

- Observe blank sky for $t_{\text{reference}}$ sec
- Fire noise diode to determine T_s
- Move telescope to object & observe for t_{signal} sec
- Can observe an extended source using this technique -- ‘signal’ observations arranged in a “grid” map.

Spectral-Line - Point Sources
Position-Switched Observing
Spectral-Line - Point Sources
Position-Switched Observing

\[
T_A(f) = T_s^{\text{reference}}(f) \begin{bmatrix} P_{\text{signal}} - P_{\text{reference}} \\ P_{\text{reference}} \end{bmatrix}
\]

- \text{Smoothed/Averaged } T_s \text{ of Denominator}
- \text{Signal (line expected)}
- \text{Reference (No line expected)}

\[
T_s^{\text{reference}}(f) = \left(\frac{T_{\text{cal}}}{2} \right) \left(\frac{P_{\text{reference}}(f) + P_{\text{cal, on}}(f)}{P_{\text{cal, on}}(f) - P_{\text{cal, off}}(f)} \right)_{M \text{ Channels}}
\]

\[
\left(\frac{\sigma_{T_s}}{T_A} \right)^2 \approx \frac{K}{\Delta \nu / N_{\text{channels}}} \left(\frac{1}{T_{\text{cal, on}}} + \frac{1}{T_{\text{cal, off}}} + \frac{\sigma_{T_s}}{T_s} \right)^2
\]

- But only for weak lines and no strong continuum!
- Constant depends upon details of the detecting backend

Phases of a Observation
Switched Power – Frequency Switching

- Signal Frequency
- Reference Frequency
- Local Oscillator

- Detector Sig Cal On
- Detector Sig Cal Off
- Detector Ref Cal On
- Detector Ref Cal Off
Spectral-Line - Point Sources
Frequency-Switched Observing - In band

Line appears twice – should be able to "fold" the spectra to increase SNR

Spectral-Line - Point Sources
Frequency-Switched – "Folding" In Band

\[T_A = T_s \text{REF}^n \frac{[\text{SIG-REF}]^{\text{REF}}}{\text{REF}} \]

\[T_A = T_s \text{REF}^n \frac{[\text{SIG-REF}]^{\text{REF}}}{\text{REF}} \]

\[T_s = T_s \text{REF}^n \frac{[\text{SIG-REF}]^{\text{REF}}}{\text{REF}} \]

\[T_s = T_s \text{REF}^n \frac{[\text{SIG-REF}]^{\text{REF}}}{\text{REF}} \]

\[T_s = T_s \text{REF}^n \frac{[\text{SIG-REF}]^{\text{REF}}}{\text{REF}} \]
Spectral-Line
Baseline Fitting

- Polynomial: same as before
- Sinusoid

Spectral-Line
Other Algorithms

- Velocity Calibration
- Velocity/Frequency Shifting & Regridding
 - Doppler tracking limitations
- Smoothing – Hanning, Boxcar, Gaussian
 - Decimating vs. non-decimating routines
 - For “Optimal Filtering”, match smoothing to expected line width
- Filtering – low pass, high pass, median, ...
- Moments for Integrated Intensities; Velocity centroids, ...
Spectral-Line
RFI Excision

Spectral-Line Mapping
Grid or On-the-Fly
Spectral-Line Mapping
Grid and On-the-Fly

\[W(\alpha, \delta) = \sum_{V_i = V_{\text{min}}}^{V_{\text{max}}} T(\alpha, \delta, V_i) \cdot \Delta V_i \]
(If \(V_1 = V_2 \Rightarrow \text{Channel Map} \))

For \(\{v=v_{\text{min}}\} \ \{v <= v_{\text{max}}\} \ \{v++\} \)
if \(T(\alpha, \delta, v) > T_{\text{min}} \) then
\[W(\alpha, \delta) = W(\alpha, \delta) + T(\alpha, \delta, v) \]
endif
endfor

Spectral-Line Mapping
Grid and On-the-Fly

\[T(\alpha, V) = \sum_{\delta = \delta_{\text{min}}}^{\delta_{\text{max}}} T(\alpha, \delta, V) \]
(Position-velocity map)
Spectral-Line Mapping

The Future of Single-Dish Data Analysis

- Increase in the use of RDBMS.
- Support the analysis of archived data.
- Sophisticated visualization tools.
- Sophisticated, robust algorithms (mapping).
- Data pipelining for the general user.
- Automatic data calibration using models of the telescope.
- Algorithms that deal with data sets.
- Analysis systems supported by cross-observatory groups
- More will be done with commercial software packages