Technical Page

Proposal Type: Regular
General Category: Astronomy
Sub-Category: Spectroscopy
Observation Category: Extragalactic
Total Time Requested: 40 Hours
Minimum Useful Time: 1 hour

Proposal Title: Probing fundamental constant evolution with conjugate OH lines. *ABSTRACT:*

We propose to use the Arecibo L-band receiver to obtain deep, high resolution spectra in the redshifted 18cm satellite OH lines from the z=0.247 source, PKS1413+135. The conjugate nature of the lines implies that these high precision redshift measurements can be used to probe changes in the fundamental constants α , $\mu \equiv m_e/m_p$ and g_p over the range 0 < z < 0.247. The observations will obtain 1σ sensitivities of $[\Delta\alpha/\alpha] \sim 6\times 10^{-7}$ and $[\Delta\mu/\mu] \sim 1.2\times 10^{-6}$ to fractional changes in α and μ respectively, the most sensitive from any astronomical technique and with the fewest known systematics. They will directly test our tentative detection of changes in these constants, a 3σ result with the Arecibo telescope and will provide an avenue to probe new and fundamental physics. Our total time request is 40 hours, including all calibration.

Name	Institution	E-mail	Phone	Student
Nissim Kanekar	National Radio As-	nkanekar@aoc.nrao.edu	15058357334	no
	tronomy Observatory			

Remote Observing Request

X	Observer will travel to AO
	Remote Observing
	In Absentia (instructions to operator)

Instrument Setup

L-wide

Atmospheric Observation Instruments:

Special Equipment or setup: none

RFI Considerations

Frequency Ranges Planned

1138-1382

This proposal requires coordination with Punta Salinas radar within the band 1222-1381 MHz..

This proposal requires coordination with GPS L3 at 1381 MHz.