Date Received: 2000-Sep-29_17:01:44

Technical Page

Proposal Type: Regular

General Category: Planetary Radar

Sub-Category: Radar

Observation Category: Solar System
Total Time Requested: 50 Hours

Proposal Title: Surface properties of Venus from radar observations *ABSTRACT*:

We are proposing new radar observations of Venus in March/April, 2001 aimed at: 1) investigating the relationship between height and the low emissivity/high reflectivity terrains on Maxwell Montes by measuring the topography of Maxwell with considerably better spatial resolution than achieved by Magellan; 2) measuring the physical and electrical properties of crater haloes, aeolian features, Maxwell Montes, etc via full Stokes' polarization parameter imaging; 3) testing wavelength independent radar scattering models using high time resolution observations of the sub-radar area on Venus (incidence angles less than 10 deg) at both 13 cm and 70 cm wavelengths. The topographic measurements will be done interferometrically using Arecibo and the 100 m Green Bank telescope. The polarization mapping will build on our current successful analysis of similar data taken in 1999.

Name	Institution		$\operatorname{E-mail}$	Phone	Student
Donald B Campbell	Cornell	University	campbell@astrosun.tn.cornell.edu	607 255 9580	no
	and NAIC	2			

I do NOT want to do remote observing.

Instrument Setup

S-Band radar 430 CH receiver 430 CH radar S-band receiver

Atmospheric Optical Instruments:

Special Equipment or setup: Standard S-Band and 430 MH radar equipment. New 20 MHz sampling systems to be used at Green Bank and, possibly, Arecibo.

RFI Considerations

Frequency Ranges Planned

429 - 431 2378 - 2382

This proposal requires coordination with AFTWF within the band 425-435 MHz.