The GALFA-H1 Standard Reduction pipeline version 2.6: ad astra
per aspera

Joshua E. G. Peek (né Goldston)

July 14, 2009

1 Introduction

The purpose of this document is to acquaint anyone who intends on spending a good bit of time
processing, calibrating and gridding GALSPECT data with the details of the GALFA-HI1 Standard
Reduction (GSR) package, as written in IDL. The GALFA User’s Guide has more information
about observations and other aspects of the data pipeline. Certainly it would do a new user good
to examine The GALFA User’s Guide before delving into this document, although at this writing,
this document is significantly more up-to-date. On the other end of the practicality to theory
spectrum, Peek & Heiles (2008; http://arxiv.org/abs/0810.1283) contains a thorough description
of the principles behind the data reduction process and explains the scale and type of residual
systematics and pitfalls. It is somewhat out of date at present, as the code has been revised since
its publication, though all of the principles discussed in that work do still hold true.

A note on IDL: Almost the entire codebase is written in IDL, a proprietary language licensed by
ITT. Operating this reduction software without a rudimentary knowledge of IDL would be difficult.
Like performing a musical in a language you don’t speak, you can memorize the words, but if you
get lost, well, it gets ugly. One need not be an IDL ninja, but understanding procedures, functions,
keywords, arrays and structures would be very useful. For a good IDL tutorial, follow links from
http://astron.berkeley.edu/~ heiles.

2 The General Overview

The goal of this data processing package is to take the time-ordered data (TOD) that comes out
of GALSPECT, the dedicated GALFA-H1 spectrometer, over a single region and turn it into a
calibrated, gridded spectral (PPV) data cube. Note that this version of the data reduction pipeline
is functional for GALSPECT data taken with any observing mode, and is no longer restricted to
modes monotonic in RA. This includes Basketweave, Drift, Boustrophodonic (RA/Dec) winking-
cal/TOGS II modes. The guts of the first steps in this process are handled by a suite of programs
designed by C. Heiles. These programs deal with the Least-Squares Frequency Switching (LSFS)

and header (HDR) areas of the data reduction; they do a lot of corrections to individual data
sets. These programs are explained in gory detail in GSR/PROCS/INIT/HDR AND /INIT/LSFS
SOFTWARE as well as GENERATE MH AND LSFS FILES and 1 refer the interested reader to
those documents. The pipeline being described in this document calls upon the C. Heiles suite
of codes to do the first step of reduction, but is mainly concerned with reducing blocks of data
together to make maps. Note, then, that it is not necessary to do any reduction before running the
suite of codes described in this document, although the by-product of data checking routines, such
as the Isfs and mbh files, can be used in this reduction - they are identical to some of the products of
stg0, and so some computer time can be saved by copying these to the appropriate directory. Also
note that the Archiver (see documents on this topic by M. Krco), will generate mh files that can be
used in this process as well. At Arecibo these can be found in /share/galfa/galfamh/. Because of
the many software designers there are many paths to producing LSFS and MH files, but all versions
are equally valid.

A flow chart for the data reduction is provided below in Fig 2. The chart goes from upper left to
lower right, like a page of text. FEach entry on the top of the arrow is a program that one who is
reducing the data would directly call, and below each of these entries is the data product associated
with each of these. All capital letters in the data products are stand-ins for numbers or names that
are attached to specific products. The dashed-line arrows refer to data reduction paths that are
optional. Each of these programs call on data products generated earlier in the pipeline, and many
of the call on directly antecedent products. The reduction package contains many other programs,
but these are the only ones that need be directly called by the user.

The programs covered are split into 6 groups - CALIB, SPMOD, XING, GRID, STRAD and AUX.
CALIB is responsible for the zeroth order calibration of the data, and its organization by day of
observing or ‘scan’. SPMOD is responsible for dealing with minimization of baseline ripple in the
data set. XING is responsible for the ‘crossing-point’ reduction - using the information gleaned by
comparing the relative strengths of lines observed at the same position on different days to constrain
the gain of each beam. GRID is responsible for taking fully corrected spectra and turning them into
a data cube. STRAD is our first attempt to correct for the sidelobes of the ALFA beams. AUX is
a set of auxiliary codes that may be employed in reduction, and will be explained last, though the
codes may be useful in other steps of the reduction. AUX also allows for some more sophisticated
maneuvers, such as combining data from different regions and projects into single data cubes or
renaming the paths to data when changing file systems. AUX also contains a swath of interactive
codes for inspecting and flagging data. When AUX codes could be useful in a step I will refer to
the interested reader to the AUX section.

The plan here is to talk about each of the programs that are called in the flow chart sequence
and most of the sub-programs that they call. I heavily recommend looking at this document
while examining the source code, side-by-side; the code is (typically) well documented, and many
questions on subtleties can be understood by reading the annotated code itself. For those not
familiar, IDL codes typically have commented headers that explain inputs and outputs, and I
recommend that a user spend the time to at least take a look at these headres. That being said,
some of the code involves some mind-bending array gymnastics, (and occasionally calling of C
routines) and so may not be totally transparent to the reader (or, for that matter, the author).
This code, though rather well refined at this point, may still be difficult for those not familiar with
IDL to use, particularly when exploring new observational and reduction parameter space.

pub AdAIns ay3 sa1eiauab

/SE ##100 ##0 DIA+VY IH V4TVY/
SIS N™SE ##100 ##0 13ATVY IH V4IVH/
SILY M SE #4100 ##0 DIA+VY IH V4TVY/

oxd - aqnos

awi yum Aujigeriea uieb weaq
03 suleb juiod Buissoud sarejal Jeyy
X11jew 314 sarenbs-isea) e sajesauab

ADS " JNYNONIX 3dx4s170bou/Buix/
oxd-3dx3gsT

'si9)oweled JueAS[D1 pUB SUOIEDO] JO 21N1DNIIS
e sa1esauab pue syujod Buissold |je spuly

ADS * 999 yvypbad /buix/

oxd - usbx

S
Q

uoljesbajul yoes 1oy ei1dads
uoljeulweuod, 3Y) sajeIdUS6

1S °S314 069U " #### [0¥d " VLVA 03 106/NNN"DBauJ/

oxd- Texxon

eJ1dads ||e 01 uonn|os ujeb weaq ayy
saljdde pue xujew-11j sa1enbs-15e3| 3Y3 S90S

ADS * JWYNONIX J4pbu1x/
ADS * JNYNINIX BULX"NNN"PB3J/NNN~DBRU/
ADS * JNYNINIX 0BX/

drdo

oxd-usse bx

24n1on43s uiod Buissold

1ulod BUISsoud Yydes 18 uieb anne|al ay3 1oy siy o1ul eadads payybiom speoj
ADS " §~ggg7vvyobau/Bbuix/ ADS * 174497 Vvyobau /Buix/
oxd-3TIxX oxd - mxT

uo163J 213U 10j UORWIOUI UOIHSOd
as10u wiayed paxyy saAOWa J1e yum ain3dnais 3|buls e saessusb

ADS * (JWVNONIX™)J0dds/ ADS * 4JDpPOY/
ADS * (JWVNONIX)66/

oxd - xoods oxd - xxepo3l

AONdS

uolba1 U0 Jo BuIAIDSCO S,Aep SUO WOJ) BIRP SB1BDUNI] pue sHey s1onpoud ejep 1oj 21n3oNnals
‘s1221102 J9|ddop ‘suoinda|jal J9qly SaAOWRI ‘ssedpueq SIAOWRI A1012211p wiojiun sajelausb ysel jo uondudsap

ADS *DB3J " SUpY* [OYd " ILVA " 04 106/NNN"DB3./
ADS " DB3J * #4#4# " [0¥d 31VA " F10B/NNN"DB3u/

oxd- obas

m S314 063U " #### " [0¥d * ILVA " 03 1P6/NNN DB/

(34n3onu3s Au03dadip)

oxd- sITp oyew

qarivo

AVYLS

“N— M- “N— N~

S3onpoJd bapbp pa3pJduab

Sopoo burtjeisusb

3 CALIB Programs

3.1 make dirs.pro

To simplify the reduction process we set up a directory structure that is unique to each project —
this helps the code be sure where everything is, and is the basis for the rest of the reduction. It is
completely mandatory to set up this file structure in this way - otherwise the code will fail. The
directory structure is regularized by make_dirs, which is run as follows:

IDL> make_dirs, root, project, regions, scans, tdf=tdf

root is the directory the whole thing falls under, project is the project name that GALSPECT
used to write the fits files (e.g. al234), regions are the names of the different regions done in
the one project (can be a single entry), and scans are the number of days each one takes (again,
can be an array or a single number). NB: It is recommended to name your regions with a short
string of lowercase letters - names that use underscores, hyphens, capital letters or, heaven forfend,
spaces may not be supported in the software. It is also not advisable to name project or region
as a subset of each other or any part of the root. The directory structure it generates is shown
graphically in Fig. 1. A note on directory specification: in this pipeline, any time you specify a
directory, specify it with a trailing /, e.g. /share/galfa/galfamh/. The tdf keyword allows for
reverse compatibility to the original two-digit formatting that was the standard for versions of the
pipeline before v2.2. The current version uses three digit formatting to label directories by day
in the scan. Note that these names, root, project, and scans are standardized throughout the
pipeline, along with region. A note on ‘scans’: In this GSR pipeline, and this document, ‘scan’ and
‘day’ are used interchangeably. In both cases what is being referred to is a uninterrupted session
of data taking with GALSPECT and the associated TOD. Typically, one uses only a single scan
for each contiguous data-taking session, though one may wish to break up a given session of data
taking into many separate scans/days, for instance in the case of leapfrog scanning, which the code
will happily interpret. On the other hand, any non-contiguously taken data cannot be put into
the same scan/day. The unfortunate and redundant day/scan nomenclature is an artifact of the
version history of this code, for which we apologize. If day and scan are both used in a procedure
call, day refers to the calendar day of the observation.

Note that this stage of the reduction, making the directory tree, needs only to be run a single time
for a project. The rest of the reduction process will refer to a single region within this project, and
would have to be run multiple times for multiple regions. It is also important to realize that the
reduced data itself will be imprinted with the original root directory you choose to run the code in.
It is advisable to run this reduction in one directory, and not move it from place to place, as this
will confuse the reduction. There are codes to deal with moving directory trees (see §777), but if it
is recommended that the user attempt to avoid this situation.

/this/is/my/directory/proj

/fits /rega /regb /regc /mh

/xing /rega 000 /rega 001 /rega 002 . /1sfs

Figure 1: The file structure generated by make dirs, ¢/this/is/my/directory/’, ‘proj’,
[‘rega’, ‘regb’, ‘regc’]l, [5,6,8]

3.2 stgl.pro

The stage zero (stg0) data reduction takes the data in raw form (fits files) and

e removes the IF bandpass (see Heiles 2005, GALFA Technical Memo 2005-01 on how exactly
this is done)

e does a rough gain calibration to put the data into temperature units
e removes bright, single channel radio frequency interference

e removes cable echo artifacts

e does a doppler correction to the Local Standard of Rest (LSR) frame
e finds the data that are during your day’s scan

e saves these data to an appropriate folder, for a single scan’s observing of a single region.

The data are organized by day numbers — if there are 11 days in your scan pattern your days will go

from 000 to 010, the data for each day will reside in folders in /this/is/my/directory/proj/regz/regz_000,
.../regz_001, etc. In this case you would end up running some version of the stage zero reduction

11 times, one for each day. As a byproduct, each .fits file will have a corresponding .mh file that

will live in /this/is/my/directory/proj/mh/ (unless you set nomh) and each day will have .Isfs

file that will live in /this/is/my/directory/proj/regx/lsfs. Note that if you are unfamiliar with
‘zero-indexing’, now is the time to become familiar: it is crucial to remember that if you have

N scans, your scans will be labeled from 0 to N-1. This convention is used throughout the GSR
pipeline.

This is how to call stg0.pro:

IDL> stg0, year, month, day, proj, region, root, slst, $
elst, scan, fd, v25, nomh=nomh, calfile=calfile, $
mhdir=mhdir, caldir=caldir, tdf=tdf, odf=odf, deblip=deblip

Some of these are a little subtle. scan is the day number you are interested in reducing - it is
typical to number your days of observations with scan numbers in increasing chronological order,
so that your observation on November 23rd would be scan 0, your next observation on November
26th would be scan 1 and your next one on November 24th would be scan 2. slst are the starting
LSTs of the observation. elst is the ending LST of the observation. If your observation was
a standard BW observation (now obsolesced by the smart basketweave codes in CIMA 3.0), the
relevant LSTs can be found in the output of BW_fm.pro, unless the observations were terminated
early and the spectrometer was left running for some time; then it is best to put in the LST at which
the observation was terminated, to avoid adding data to your map taken in some alien observing
mode. fd is the directory in which the code should look for the raw fits file data.

nomh allows the user to specify that no new mh files need to be generated, mhdir specifies that
mh files can be found in a specific non-standard directory. This tends to be this situation, as mh
files are generated by the archiver (/share/galfa/gal famh/). caldir similarly allows one to set a
specific non-standard directory for the LSFS file, and calfile allows the user to specify a specific
LSFS file to use, rather than generating one anew. tdf, if set, uses the old two-digit format for
directories (not recommended unless reverse-compatibility is crucial) and odf saves the reduced
data in the .sav data format, as in the previous version, rather than in the .fits format employed
in GSR 2.2. This is also strongly advised against, particularly in areas with many crossing points,
as it will make XING very, very slow.

In the current version, 2.6, a few things have been changed. In particular, the old startn and endn
inputs have been removed. To keep the code backward compatible (and add the capacity to use
these inputs in awkward situations), an input called v25 has been added. When using the code
normally, this input is left unset, which is to say the number of inputs in the code one fewer than
is called for. To use the code with version 2.5 inputs, simply call it as if it were vesion 2.5, and the
v25 input will tell the code to resort the inputs correctly. Do not set v25 unless you really know
what you are doing!

We have also added a deblip flag, which removes a peculiar form of RFI which we call ‘blips’. They
are intermittent, with a near 12-second period. They have a width of a few hundred channels, and
appear in all beams simultaneously. They seem to be composed of 4 or 5 Gaussian components,
and do not change in spectral shape. The amplitude of the blips does change rapidly from feed to
feed and second to second. If the deblip flag is set, the code will attempt to remove this particular,
pernicious form of RFI from the data before performing the LSR correction.

The stage zero reduction code calls a sequence of relevant codes to do the work of the reduction.
First, the mh files are generated. These are called through a code called mh_wrap.pro, which is
a code in the /procs/hdr suite. Unless you provide it with the name of a previously generated
LSFS file, through the calfile keyword, it will call a routine 1sfs_wrap.pro which, given a list of

file names, will generate as many LSFS files as their are SMARTF runs. Only the first of these
LSFS files each day will be used to reduce the data for that day. After these two file sets have been
generated, the code calls the calcor_gs.pro code.

calcor_gs.pro is responsible for applying the bandpass correction (through 1sfs wrap.pro) the
temperature correction (again, through 1sfs_wrap.pro), the doppler correction (through the .mh
files), un-swapping any swapped receivers, and tagging the data with other bits of useful informa-
tion, such as the the temperatures of the cals being applied. It also is responsible for only including
data that are part of the BW scan, so that the rest of the reduction is not confused by extra
data. To do these things calcor_gs calls a bunch of other yet smaller programs. For the bandpass
correction mipolycorr.pro is invoked and for doppler correction, dcs_wrap.pro is called, which in
turn calls dop_cor_spect.pro. On top of all this, a code called deflect.pro gets rid of the effect
of any bad impedance matching in the cables that run from ALFA downstairs. This single fourier
component ‘reflection’ can dominate any other ripple in the spectra. A new code has been added
that removes single-channel RFI, with the help of a code called despike.pro.

The stage zero code generates three data products. One is the reduced data, saved in a fits file
with the format reg- NNN/qgalfa. DATE.PROJ.####.abc.fits. The second is an associated .sav file,
containing mh data, information on the wide-band spectrum and useful tags. These are saved in
files with the format reg- NNN/galfa. DATE.PROJ. ####.abc.sav, each in a folder associated with
the day that it was observed. These two files contain all the data that was originally contained
in a single .sav file in the previous versions of this pipeline; one can revert to this method, with
the use of the odf keyword, though it is not advised. The last data product is a single list of the
information for a given day, including a iiber mh file that spans the entire day’s worth of time.
These are in the format reg- NNN/galfa. DATE.PROJ.hdrs.reg.sav.

3.2.1 todarr.pro

todarr.pro simply puts all the mh data together in one iiber-iiber mh-like file, for easy access.
This structure is actually called ‘mht’ and it contains only the ras, decs, UTC stamps, scans in
which the data are found, and the associated file names. These data are used in many places
throughout the code. This code needs to be run only once per reduction - even if later steps fail,
the data product from this step need not be regenerated. It is called as follows:

IDL> todarr, root, region, scans, proj, tdf=tdf

and generates todarr.sav

3.3 SPMOD

The purpose of the SPMOD software is to get rid of ripples generated by reflections inside the geodetic
dome and in the Arecibo superstructure. Our tests have shown that the largest contribution to
baseline ripple (after fiber reflections) is fixed over the course of a day in each receiver, when the

receiver does not move in AZ, ZA or rotation angle. We use this information, along with some
sophisticated modeling of the HI we observe, to greatly decrease the contribution of baseline ripple.
A subtlety with this approach is that we need to know the relative gains of the receivers before
we can disentangle the HI from the background ripple, but was need to be able to remove the
background ripple so that we can accurately determine the relative gains! Our solution is to jump-
start the process by making a guess as to the relative gains of the beams first, by just comparing the
Hi from beam-to-beam each day. We then take that, use it to get rid of the ripple (SPCOR), use the
ripple-removed data to do an accurate gain calibration (XING), and then go back and re-run the
ripple removal process (SPCOR). So the true process is CALIB, SPCOR, XING, SPCOR, GRID,
STRAD, GRID (if you also include the sidelobe correction). A few things must be mentioned about
this approach. Firstly, it is not always fruitful to iterate on this step, and it is unknown as to exactly
why iteration works on some data set and not others. Secondly, it is crucial to mention that it is
not yet known whether these techniques have any useful effect upon data where the ALFA rotation
angle changes substantially during the run or upon data where the telescope points significantly off
of the meridian during the run. It is the author’s guess that this is a useful reduction to run for the
latter situation, and not the former, but at this point this is only educated speculation. Also, the
code will happy run GRID at this point, using the data from CALIB. It will be very stripy, but if
you want to know whether things are basically working, it is recommended that you skip to GRID
before running this section.

3.3.1 spcor.pro

spcor.pro is responsible for doing this processing and calling all the relevant sub-codes.

IDL> spcor, root, region, scans, proj, $

noaggr=noaggr, badrxfile=badrxfile, xingname=xingname, $
tdf=tdf, odf=odf, old_zg=old_zg, rficube=rficube, fn=fn, $
vl=vl, forcel=forcel, decrng=decrng

The first four inputs are in the standard format. The noaggr keyword is for if you have already run
the code and trust your aggregate spectrum file (aggr(_ XINGNAME).sav) - aggregating the spectra
takes some time, so this a good keyword to use if you have already generated your aggr.sav file.
userrxfile is the same as is stg0.pro, and should be set if you have a badrx file. xingname should
not be set the first time through SPCOR - it is the name of a previous XING reduction to apply,
and if set will instruct the code to read XING and old SPCOR data. The second time through
SPMOD it should be set to the the name used in the previous run of your XING reduction (the
xingname variable in 1sfxpt.pro and xg_assn.pro).The odf and tdf keywords are the same as in
INIT. o1d_zg uses an older style of zero-order gain correction, which is not reccomended. rfi_cube
is a preliminary keyword to stop RFI from interfering with the baseline ripple fit. It is a [8192,
2, 7, scans| vector that is mostly 1s, but is zero where you wish to zero-out any RFI. Typically
the keyword is implemented if the fits from SPCOR seem to be corrupted by RFI. Note that this
keyword only functions when using the v1 keyword. fn can be set to files containing non-standard
equations of condition solutions to the fixed-pattern noise. This is an engineering mode.

GSR version 2.6 saw a major upgrade in spcor.pro, as reflected in the following keywords. The
code now accounts for variations in the the declination of the observation, as the ripple will change
as dec changes for a fixed hour angle. This modeling of declination changes means the code must
make a guess as to the range of declination that the useful part of the observation covers, which
necessitates the addition of the keywords forcel and decrng, in case the code has trouble with this
guess. The code also now tries to use data with limited HI intensity, so as to limit the contamination
of the deduced ripple spectra by the HI. It also corrects for the effect of the LSR shift over the
course of the day, so that the ripple removed matches the ripple observed. The v1 keyword reverts
to the original version of the code, which does not implement these changes. The forcel keyword
can be set to an array of 1s and Os, with length equal to the number of scans. For any scan where
forcel is set to 1, only one declination region is set, regardless of the range in decs is in the raw
data set. This is useful for drift scans, which occupy only a single dec, but might have extra data
at other decs we wish to ignore. The decrng keyword is similar, but it allows the user to force a
particular declination range to use, if a basketweave scan is expected to run over a certain range,
but includes extra data that would confuse the software.

spcor.pro will call three main codes to do the analysis - aggr_spect . pro, which aggregates spectra
over the whole data set, zogain.pro, which determines the zeroth order gain corrections and
find fpn.pro, which finds the so-called ’fixed-pattern noise’, the dominant part of the baseline
ripple which we are attempting to mitigate.

The data products from this code are aggr(_ XINGNAME).sav and spcor(-XINGNAME).sav. Note
that in the new version the data in spcor(_XINGNAME).sav is substantially changed and more
complex.

3.4 XING

3.4.1 xgen.pro

xgen.pro is responsible for finding all the crossing points. This is a relatively fast procedure, as
the code only reads the .hdrs files, rather than the entire data sets. xgen.pro takes a standard set
of inputs:

IDL> xgen, root, region, scans, proj, goodx=goodx, $
xday=xday, tdf=tdf, blankfile=blankfile

xgen.pro is primarily a wrapper for a more core piece of code, in this case newx.pro. xgen.pro
calls newx . pro for all possible combinations of scans and beams crossed with all other combinations
of scans and beams. It first does the auto section, which is to say beam-to-beam crossing within a
single day, and then does the main section, for beam-to-beam crossing on days that are not alike.
Note that on a given day we do not wish to allow all beams to cross each other - some beams never
cross, and some beams cross in awkward points, when cals may be firing or when the telescope is
slewing quickly. This is taken care of by a 7x7 matrix, goodx, which is set up for gear 6, normal
basketweave scanning and can be superseded with a keyword of the same name. Note that only

the upper triangle, goodx[i, j], with i < j, is relevant. xday can be set to an equivalent matrix,
but for days. If you do not wish to look for crossing points between specific days, set this to be
a NgaysXNgays array, with 1s at [n,m] where you wish to compute crossing points between day n
and day m and Os where you do not. blankfile can be set to the full path to a file containing
blanking data - a range of UTCs for a given beam to not include in the crossing point information.
getx.pro, the core code, when handed a the appropriate mh files, will generate a structure (xarr)
that contains a lot of different information about the crossing points. This information includes
the day (or ‘scan’) number and beam number of each of the tracks that crossed, as well as time
information, in which files the spectral data can be found and the positions of the crossing point.
It also includes weights, which is to say how much emphasis to put on the data point before the
crossing and how much to put on the one after the crossing. Currently this is just a linear weighting
by distance from the crossing point. The structure also contains blanks for spectra to be loaded
in and relative gains to be determined, that will be filled in later steps. xgen.pro serves to feed
this program the correct information to make crossing point structures and save them with the
appropriate names. The data products are called zing/regAAA_BBB.sav. Note: This needs to be
run only once, and does not need to be rerun for future times through the XING process.

3.4.2 1lxw.pro

After xgen is run, all of the spectra must be loaded into the crossing point files, with a code called
lxw.pro. lxw.pro is called similarly:

IDL> 1xw, root, region, scans, proj, $
no_over=no_over, xday=xday, badrxfile=badrxfile, $
tdf=tdf, odf=odf,no_auto=no_auto,$
xingname=xingname, keepold=keepold, $
no_spcor=no_spcor, parallel=parallel

with all the inputs identically formatted. The keyword xingname allows the user to input the
previous run through’s XINGNAME, so as to load appropriate spcor data and XING corrections.
This is a little confusing, so I will try to be as clear as possible. The first time through XING,
do not set this parameter, until 1sfxpt and xg_assn, wherein you will name the XING reduction
you are doing. The second time though, set this value to the value you set in the previous round
for xg_assn and 1sfxpt, and make a new name once you get to 1sfxpt and xg_assn the second
time around. The badrxfile keyword here refers to any badrx file you might wish to use to avoid
loading corrupted spectra. The no_auto keyword allows the user to skip loading crossing points
within a day (usually used for engineering) and no_over allows the user to not reload data that
has already been loaded, if the program was interrupted. keepold allows the user to keep the old
_1 files from a previous time through the SPMOD-XING loop. This is worth setting in case the
reduction runs into errors, but once the data make a good image it is a good idea to delete these as
they can take significant disk space. parallel allows the user to paralllelize this code across any
number of machines -many copies of this command can be run at once with this keyword set. This
will increase the speed of the code of almost N-fold. Note that the implementation of this keyword
has changed since GSR2.5. no_spcor allows 1xw to run without any spcor data.lxw.pro takes a
significant chunk of time, because of the amount of file reading and writing required. As above, this

10

is only a wrapper code. The core code that is being run is a code called loadxfits.pro, a much
simplified version of loadx.pro. Note that loadx.pro is used when the data are stored in the
older data format, which can be excruciatingly slow. As it is, this code can take hours to run. Note
that this code calls a multipurpose code called fixrx.pro, which takes any dataset that has bad
receivers and overwrites the offending data with its beam-pair. Since the spectra we are interested
in are an average of these two polarizations, we don’t want to average in any bad data. Of course,
this reduces our signal-to-noise, but so be it. This procedure produces a similar data product to the
last one, the only difference being that the slots for spectra are now filled with correctly weighted
spectra. They are written in the format zing/regA AA_BBB_l.sav.

3.4.3 =xfit.pro

The relative point-to-point gains must now be determined.

IDL> xfit, root, region, scans, proj, no_auto=no_auto, $
conrem=conrem, tdf=tdf, $
keepold=keepold, xingname=xingname

conrem would only be set if the data had not had their continuum subtracted in the previous stages
- this should be considered an ‘engineering’ mode that should never need to be invoked.

xfit.pro otherwise follows the same structure as the previous code, but does not (for some reason)
call a core code. It effectively plots the two spectra against each other and fits a line to the slope,
thus determining the relative gain. It records this as well as any detected offset in the baseline,
which is currently ignored. On occasion the fitting program flips out, with some part of the fit
non-converging, so there is an error trap to deal with this - usually this comes from user error.
All of the original data, plus the gain and zero-point, less the spectra themselves, are saved in a
structure called ‘outx’. They are save in files called zing/regAAA_BBB_f.sav

3.4.4 1sfxpt.pro

lsfxpt.pro is the code responsible for engineering the ‘equations-of-conditions’ (X) matrix that
fits all of the of the crossing point. It is based upon the idea that the ratio of the gains can be
approximated as

_ Gpp(t) 1+ dpp(t)
C Gpp(t) 1+0pp(t)
where B and B’ are some arbitrary beams and D and D’ are some arbitrary days. Note that the
approximation here induces errors of 262/ (1 — §), which get to be 10% when § nears 20%. This
allows us to set up our Y in the equation

R

~ 14 0pp(t) — dppr (1), (1)

Y=X.C 2)

11

as just
Y=04—-6p=R—-1, (3)

which is linear in the dpp(t), and so can be solved with a set of linear equations. The C is a set
of coefficients that determine the varying gain of each beam. The ‘equations-of-conditions’ matrix,
that connects our data (Y) to the parameters we wish to fit (F) can be set up in a variety of
different ways, controlled by the various keywords.

IDL> 1sfxpt, root, region, scans, proj, $

degree, xarrall, yarrall, xingname,$

fourier=fourier, daygain=daygain, beamgain=beamgain, $
big=big, tdf=tdf, time=time

root, region, scans and proj are all standard inputs. degree is the degree of polynomials to
fit to the varying gains of each beam and day. Set it to -1 to have no polynomial fits and to 0
and higher to have polynomial fits of those orders. xarrall and yarrall are the output matrices
that are generated, and are only output here for diagnostics. name is the name of the fit, which
allows the user to keep track of different attempts to fit the varying gains. The fourier keyword
allows the user to fit with sines and cosines by setting it to [a,b], where a is the lowest order (1 is
a single period across the domain) and b is the highest order. Currently 1 is the lowest value that
works for fourier (the zero-order fourier component, e.g. DC offset, can be done with zeroth order
polynomials). The daygain and beamgain keywords allow one to fit overall gains for each beam
(which are equivalent to the cal values for that beam) and for an overall day. It is not yet known
how much the optimum parameters will vary from region to region, but a good first guess might
be to set degree to 0, to get the basic overall numbers, and fourier to [1, 3], to get a little bit of
higher-order correction. Three new keywords were implemented in gsr 2.3 . The first is big, which
allows the code to handle situations where the number of crossing points in so large that the X
matrix cannot be handled in memory. In this case, for each crossing point file X7 X and X7V, are
generated and then co-added to all following files. This is recommended. The second is the time
keyword, which, if set, parameterizes the gain variations in UTC time, rather than RA. It is not
clear to the author if there is ever a reason not to set this keyword, but it certainly must be set
for any data set non monotonic in RA. 1sfxpt.pro calls a piece of code called makdom.pro which,
for each scan, generates a range over which the fourier components and/or polynomial coefficients
can be evaluated. This range is expressed as a structure (mdsts) that can be read by locdom.pro,
which is used to evaluate the elements of the X matrix. The X matrix must also contain constraints
on the gains; since the gains are relative, the fits are equally good if all the gains are evaluated
to be huge or tiny. We do this through a ‘pinpoints’ constraint. At a bunch of specific RAs (or
times), the total of all the fits for each beam and day is forced to be zero. These pinpoints are
regularly spaced throughout the domain, and are proportional in number to the highest order (in
fourier or polynomial) fit coefficients. The X and Y matrices that are generated by the program,
along with the the mdsts structure, the length of the data (non-constraint) part of the Y array
(ndata), the locations of the crossing points and the pinpoints are all saved in a file of the form
/zing/reg_lsfrpt NAME.sav

12

3.4.5 xg_assn.pro

xg_assn.pro is designed to assign the gains to each point in the data set, given the output of
1lsfxpt.pro. The code has rather simple inputs:

IDL> xg_assn, root, region, scans, proj, fitsvars, xingname, $
cutoff=cutoff, big=big, tdf=tdf, time=time

fitsvars is an output for all of the variables that get generated while solving the matrix-inversion
problem. It is good to examine this data to understand the goodness of your fit. name is the same
as the name used in the 1sfxpt.pro and names this set of gain files. cutoff allows one to set
a cutoff value for the inverse of the weight matrix as determined by 1lsf_svd.pro. big should be
set if it was set on lsfxpt.pro, to do the correct matrix inversion. tdf reverts to the two-digit
format. time assumes the crossing points are parameterized by time, rather than RA, and should
be set if it was set in 1sfxpt.pro. Note that the code can take an extremely long time to run and
may max out the memory of a computer. More than about 15 fourier coefficient terms in your
X matrix (see lsfxpt.pro) may in fact top out a 2 GBs of RAM machine, and may take many
hours to run. This procedure generates 3 data products. One is the crossing point gains, separated
into their respective directories, in the files /reg - NNN/reg NN N _zing N AM E.sav. Another is
an amalgamation of all these data in a single file, called /zingarr_ N AM E.pro. The last contains
all of the fitting data, and is called /xga-N AME.sav

3.5 GRID

3.5.1 sdgw.pro

sdgw.pro has a storied lineage; gridzilla, AO _gridzilla, ao_gridzilla.GALFA, gridzalfa and, finally,
sdgw, which departs somewhat from the theme. The product of sdgw.pro is the final gridded
data in two formats; .fits and .sav files. The complexities of how this code works are way beyond
the scope of this document, except to say that it is a wrapper code that calls the brains of the
operation, sdgrid.pro, written by Tim Robishaw. It calls the code once to determine which files
are needed in a given grid and the again for each data file that needs to be loaded. It is called as
follows

IDL> sdgw, root, region, proj, gridname, lon0O, latO, spmax, $
spmin, spres, imsize, rs=rs, projection=projection, _REF_EXTRA=_extra, $
tdf=tdf, spname=spname, badrxfile=badrxfile, xingname=xingname, $
fwhm=fwhm, vel=vel, allfiles=allfiles, savepath=savepath, $
gridfunc=gridfunc, odf=odf, norm=norm, blankfile=blankfile, $
arcminperpixel=arcminperpixel, pts=pts, truecart=truecart, $
cpp=cpp, nofits=nofits, spp=spp, strad=strad, nan=nan $

13

The first three parameters are as usual. gridname is any string you would like to identify the grid
with. 1lonO is the center of the grid in longitude space in degrees. latO is the same for latitude.
spmax, spmin and spres define the maximum, minimum and binsize for the spectra to grid, which
can be specified in spectral channel or in km/s, depending upon how you set the keyword vel.
imsize is a 2-element array that is set to the size of the region in pixels. If the keyword xingname
is set, crossing point calibrations with that name are applied to the data. rs allows the user to
change the root of the data file, if the reduction was begun on another file system. Specify file
to use a specific badrx file to eliminate bad rxs. Specify savepath if you wish to have the data
save somewhere other than the main directory of the region. To use the spectral correction from
SPMOD set spname to the name of the last spmod reduction. This is a little confusing - if you've
run SPMOD and then XING, set spname to ‘null’ and xingname to whatever you called your xing
reduction. If you’ve run SPMOD then XING and then SPMOD again, based on your XING, then
set both of them to the same xingname. If you’ve run SPMOD, XING, SPMOD, XING then set
spname to your first xingname and xingname to your more recent xingname. You can keep refining
this, but it has not yet been shown to have any good effects. tdf and odf are as usual and fwhm
specifies the FWHM of the convolving beam, which can just be left to the default 3.35 arcminutes.
It is possible that crisper maps may come from decreasing this number, but we have yet to examine
this issue in detail.

allfiles, if set, skips the step in which the files to be included are verified - this will save a
little time if you are certain that all your data files lie within your grid region, and will lose a
lot of time if you specify it without this being true. projection specifies one of the projections
from Calabretta & Greisen 2002, A& A, 395, 1077 - see line 278 of sdgrid.pro. If this is not set,
the default is the Cartesian projection. Not all of these projections have been carefully tested, so
beware. arcminperpixel is self explanatory, and is defaulted to 1. gridfunc allows the user to
specify a gridding kernal, and is defaulted to a Gaussian kernal. norm allows the user to specify a
normalization of the entire data set to divide by. Setting norm eliminates the LDS calibration of
the data that would normally happen. It is a good idea to use norm if either you are looking at data
very far off the static Galactic Hi (e.g. HVCs), so that calibrating would be very noisy, or if you
are doing many grids you wish to stitch together, where you would like to have a fixed calibration.
Automatic normalization can fail entirely if the requested cube is very narrow in velocity range
(< 2 km/s) or at very high velocities. In all of these cases, it is recommended that the user do
a first pass on a normal sized grid that spans the static HI line, retrieve the normalization factor
and then apply it to subsequent grids. blankfile allows the user to specify a file that contains
information about bad seconds, and removes said data. pts is an engineering mode allowing the
user to highlight points in the map to check registration issues. truecart is very important, and it
belies a complexity in the word ‘Cartesian’. Most people imagine that the word ‘Cartesian’ applies
to maps with equal spacing in RA and Dec and with pixels that increase in y having fixed RA and
pixels that increase in x having fixed Dec (or orthogonal graticules, for the enthusiasts). From the
perspective of Calabretta & Greisen 2002 this is only true if the projection center is a [180, 0]. If
the projection center is at the center of the map, these things will not be true, and you will get a
weird map, that does not register. To force the center to be at [180, 0], set truecart. Note that
though the pixels will be in the right spot, some fits readers will not read these maps correctly,
instead assuming the wrong projection center. This problem is still under study. cpp forces the
C++ implementation of non-square sparese-matrix inversion (long story), but should not be used
for most data cubes. nofits stops the code from producing fits files and only produces the IDL
‘.sav’ files. The nan keyword fills the blank areas with NaN, rather than zero, and is needs when it

14

is called by sdgw.pro.

3.5.2 scube.pro

scube is a wrapper code for sdgw that generates GALFA-HI survey cubes. So what is a survey
cube? Survey cubes are the agreed upon format for the entire GALFA-HI survey. They are 512
x 512 pixels, in true cartesian projection with 1 (small-circle) arcminute per pixel in both RA
and Dec. Four distinct data products are generated over this region. First, the ‘time’ images,
which show the integration time over each pixel. Second the ‘Wide’ cubes, which average over 4
channels in frequency to build cubes that span the entire velocity range. These are 512 x 512
x 2048 data cubes, stored in fits files as scaled integers. Third, the ‘Narrow’ cubes, which span
only 1/4 of the velocity range to retain the full velocity resolution of 184 m/s, stored similarly to
the ‘Wide’ cubes. Finally, the ‘RA-vel slices’, 512 individual files for each survey region that are
slices through the cube at a fixed Dec. These are stored in their own folder. These follow the format:

GALFA_HI_ RA_+DEC_004.00+02.35_T.fits
GALFA_HI RA_+DEC-004.00+02.35_W.fits
GALFA_HI_ RA_+DEC_004.00+02.35_N.fits
GALFA_HI RA_+DEC_004.00+02.35/GALFA_HI_ RA_+DEC_004.00+02.35_000.fits
GALFA_HI_RA_+DEC-004.00+02.35/GALFA_HI_RA_+DEC-004.00+02.35_001.fits

for the survey cubes centered at RA = 4°, Dec = 2.35°. The cubes are spaced by 8° (less than
their linear size by 32 pixels) in both RA and Dec, so there are 45 center positions in RA (4°, 12°,
20°, ..., 356°) and 5 center positions in Dec (2.35°, 10.35°, 18.35°, 26.35°, and 34.35°). See Figure
3.5.2. scube is called as follows:

IDL> scube, root, region, proj, cnx, cny, rs=rs,$
tdf=tdf, spname=spname, badrxfile=badrxfile, $
xingname=xingname, odf=odf, blankfile=blankfile, $
arcminperpixel=arcminperpixel, norm=norm, $
pts=pts, cpp=cpp, madecubes=madecubes, $
noslice=noslice, strad=strad, mnocleanup=nocleanup

With all of the calls being the same as those called in sdgw, except cnx and cny, which are the
zero-indexed positions of the cubes requested for RA and Dec, respectively. So to make the cube at
RA = 20°, Dec = 10.35° one would set cnx = 2 and cny = 1. strad and nocleanup are addressed
below.

15

A TN 74 4 N 1 3 3 .8¢

512°

(LS

IoO
,GEC
.GeoL—-0l
.GE°81
€8l_ or s
(@)
.G€9C
—.0¢
LGEPE
—. 0t

16

3.6 STRAD

This suite of codes implements a correction to a final data cube for the effects of the first sidelobe of
the ALFA beam pattern. It effectively makes a new set of time-ordered data that contains the spec-
tra that contaminate the original spectra from the sidelobes. It does this ‘re-observing’ by assuming
a data cube created by scube is a good representation of the sky, and then examining that cube with
our measured shapes and amplitudes for the sidelobes in question. This generates a set of spectra,
saved in files that mirror the original data, e.g. reg-NNN/galfa. DATE.PROJ.####.abc.fits.SL.
These spectra can then be removed from the orginal data and regridded by re-running scube with
the strad keyword set. Note that the original data cube from which these sidelobe spectra are taken
and the final cube must have the same scale factor, otherwise the amplitude of the sidelobes will be
incorrect. To implement this stray radiation correction, simply run the scube code again, now with
the strad flag set. Note that at present only the wide cubes are used as the dirtycubes, which will
somewhat degrade the spectral resolution in the resulting cleaned narrow cubes and slices. The
nocleanup flag will, if set, not remove the reg NNN/galfa. DATE.PROJ. ####.abc.fits.SL data
when the processing is complete. This is primarily for inspecting the data.

3.7 AUX

AUX contains a variety of codes that allow the user to do some fancy things with the data, and
in particular allow the user to manipulate file structures using symbolic links, to cull and combine
data sets. It also has a number of codes that allow the user inspect and flag the data interactively.

3.7.1 merge.pro

merge.pro allows the user to combine two completely separate data sets into a new data set. This
allows the user to do crossing point calibrations between two data sets. It is called as follows:

IDL> merge, rootl, projl, regionl, daysl, $
root2, proj2, region2, days2, $
newroot, newproj, newreg, odf=odf, tdf=tdf

The inputs are all in analogy to the simple root, proj and region, but specify the two original
regions (1 and 2) and map to a new region (new). This is all accomplished through symbolic
linking.

3.7.2 subday.pro

subday.pro is built on the same chassis as as merge.pro, but has a slightly different goal. It
extracts a subset of days the user wishes to examine from a single region and symlinks it to a new
directory. It is called as follows:

17

IDL> subday, sds, rootl, projl, regionl, daysl, $
newroot, newproj, newreg, odf=odf, tdf=tdf

and is in complete analogy to merge.pro. sds is a list of days the user wishes to keep.

3.7.3 plotmh.pro

plotmh is a simple diagnostic tool that allows the user to plot all of the positions of the data in a
region. It is called as follows:

IDL> plotmh, name, EXTRA=ex, mht, noplot=noplot, $
mhtfile=mhtfile, ctbl=ctbl, cutoff=cutoff

name is the name of the project in question. Any keywords can be passed to the plot command, via
_EXTRA. If noplot is set then no plot is made. If mhtfile is set, then instead of cobbling all data
points together from mh files, the composite file is read from this path, otherwise it will be written
to /share/galfa/mhtfile.sav/. cutoff is a way to limit the number of objects shown in the legend -
set it to the lowest number of seconds acceptable for an object to get an entry in the legend.

3.7.4 endfinder.pro

endfinder.pro is a tool to select the correct LST endpoints for a set of observations, and is
designed to be used in conjunction with stg0.pro. It is important to select these carefully, lest
your data be contaminated by data taken in alien observing modes. It is called as follows:

IDL> endfinder, year, month, day, proj, $
root, lsts, mhdir=mhdir, mht=mht, th=th$
wt=wt, ct=ct

where the first 5 inputs are standard and the last output, 1sts is a 2 element array with the starting
and ending lsts to use in stg0.pro. mhdir is the directory in which the mh files are located and
mht is an output structure containing all the mh information read. th is the thickness of the data
displayed; setting this to 2 or 3 may help the visibility of the plots. wt is the wait time between
clicks - if you are having trouble accidentally clicking, you may want to set this to 1 or 2. ct is the
color table (as in the loadct command), which defaults to 13. Choose another color table if you
wish. The code is a self-explanatory GUI that requires a 3-button mouse.

3.7.5 examaggr.pro

examaggr . pro is designed to allow the user to look though the aggregate spectra as created at the
beginning of spcor.pro. Is is called as follows:

18

IDL> examaggr, root, region, proj, wt, _REF_EXTRA=_REF_EXTRA

The first 3 inputs are standard and wt is the wait time between displaying the data. _EXTRA allows
the user to add any other plot keywords, to better control the plot outputs.

3.7.6 tl.pro

t1.pro is a code used for determining relationships between the gridded data and the time-ordered
data. If you see a flaw in your gridded data and you want to trace back where that flaw originated
from, t1 is the code for you. Essentially, it displays a data cube and then allows you to cursor over
the cube. It will overlay the time ordered data associated with where your cursor is, and output
all the various information regarding that time ordered data.

IDL> t1, fn, todarr, day, beam, $
second, file, slrange=slrange, blfile=blfile

fn is the name of the image fits file you wish to investigate, an output of sdgw or scube. todarr is
either the path to and name of the todarr.sav file, or the variable restored from that file, mht. day,
beam, second, and file are the outputs from the code, which tell you everything you might need
to know about the position of the time-ordered data you have selected. If the input cube is a survey
cube, slrange can be set to a two element array to limit the range over which the loaded cube
extends in velocity. blfile can be set to the path to the blankfile, so that blanked time-ordered
data show up in a different color.

3.7.7 t2.pro

t2.pro is based on the same chassis as t1.pro, but it is used exclusively for adding blanks to the
blankfile.

IDL> t2, fn, todarr, blfile, slrange=slrange, bt=bt

The call is the same as the call to t1.pro, except blfile is an input rather than a keyword, and
the bt keyword allows you to input a two-element array containing the min and max amplitude you
are interested in seeing in the data slice. The code gives you instructions as it runs and requires a
three-button mouse.

3.7.8 add.-blanks.pro

add blanks.pro is a similar piece of code, in that it is designed to allow the user to interactively
select regions over which to blank the data. This code works in the position and overall amplitude

19

domain, rather than overlaying the TOD on a gridded data cube. This can be helpful for culling
stray scans, where the telescope pointed in a strange direction, or places where the receivers got
out-of-whack temporarily.

IDL> add_blanks, root, region, scans, proj, $
blankfile, badrxfile=badrxfile, _REF_EXTRA=_EXTRA, $
badcl=badcl, range=range, $

xsize=xsize, ysize=ysize

the only new keywords here are badcl, which allows you to set the color of the blanked data,
range, which allows you to set a range of scans to examine with a two-element array, and xsize
and ysize, which allow you to specify the size of the interactive windows. Again the code is
interactive, self-explanatory and requires a three-button mouse.

3.7.9 The cube server

There are two pieces of code that implement the serving of GALFA-HI super- and sub- cubes. The
idea is that a database is constructed of the current available survey cubes, and then with this
data base other cubes can be constructed. The server can currently only serve either ‘Wide’ or
‘Narrow’ data, and cannot make high resolution, off-line cubes from the slice data. Also note, this
is not technically part of the GSR. pipeline, in the sense that it is not necessarily associated with a
particular project.

To set up a computer system to do run the cube server, one needs to put a group of survey cubes
together in a single directory. Once this is done, the survey cubes must be cataloged. This is done
with the code £i11_T_all.pro. This is a run-time script and can be executed by simply typing

IDL> .run fill_T_all

in a copy of IDL running in the directory that contains the survey cube data. Once this is run
once, the extract_cube.pro code will work indefinitely on the server.

extract_cube.pro allows you to build new cubes with different dimensions from the original survey
cube data set:

IDL> extract_cube, ra, dec, minv, maxv, $
norw, ctitle=ctitle, xcs=xcs, ycs=ycs, $
binv=binv, nosav=nosav, nofits=nofits, $
dustdir=dustdir, datadir=datadir, hdrpath=hdrpath

ra and dec are the centers of the requested cube in degrees. minv and maxv are the velocity edges of
the requested cube in km/s. norw is set to either ‘N’ or ‘W’ to choose Narrow or Wide data cubes.

20

ctitle is the name of the output cube, xcs and ycs are the size of the cube in arcminutes (pixels),
in ra and dec respectively. binv is the binning factor; setting this to 3 reduces the resolution in
the spectral domain by a factor of 3. nosav and nofits allow the user to not produces sav files or
fits files, respectively. If dustdir is set, and contains properly formatted data from IRAS, infrared
images on the same scale are produced. datadir specifies the directory of the raw data cubes, if
you are running IDL in a different directory. hdrpath allows the user to specify a new path to the
standard header information, rather than the location in which it is typically kept in the GSR file
system structure.

3.7.10 survey cube helper codes

These are two little pieces of code that allow you to understand where the survey cubes are in the
data set.

IDL> name = cname(cnx, cny)

will print out the name of a survey cube (less the W fits, for example), when fed the coordinates
equivalent to those that are inputs to scube.pro. cplot.pro will overplot the boundaries of a
cube:

IDL> cplot, cnx, cny, _EXTRA=_EXTRA, hrs=hrs

where setting the hrs keyword specifies that the plot should be in hours RA, rather than degrees
RA.

21

