CORNELL~SYDNEY UNIVERSITY ASTRONOMY CENTER
CORNELL UNTIVERSITY
TTHACA, NEW YORK
" June 1969
J
j |
N CSUAC 182
|
THEORY OF

" POINT FED SPHERICAL REFLECTORS

| .
| Jd. J. Condon

"This is a preliminary version of a manuscript intended
for publication and should not be cited without prior

consultation with the author.



_I. -INTRODUCTION

A feed‘antenna ig called a point feed if its phase
pattern is isotropic; that is, if the surfaces of constant
phase of waves emitted by it are concentric spheres in 1its
far field. Only a paraboloidal refléctor can collimate the
radiation from.such.a feed. A spherical reflector may be
illuminated by a point feed only insofar as it approximates
a paraboloid; otherwise the reflected, or secondary, pattern
will deterioraté. In spite of this limitation, the simplicity
and small size characteristic of point feeds make them attrac-
tive for use with spherical reflectors.

Thig report presents a theoretical analysis of point fed
spherical reflectors., The variation of the secondary pattern
with feed parameters, wavelength, and reflector dimensions is
investigated, Finally formulas are given which permit the
design of'optimum.point feeds for any spherical reflector and
wavelength.

The éourse of the aqalysis is as follows. The two
dimensional Fourier transform représentation of the far field
secondary pattern of a reflector antenna 1is written down in
its most general form., The class of feed patterns consglidered
ig limited to those patterns which are rotationally symmetric,
and the azimuthal integration is performed immediately. The
remaining one dimepsional integral 1is evaluated by two dif-
ferent methods. For the first, or "direct", method, single

lobed rotationally symmetric cosine squared feed power



patterns are assumed. This class of patterns closely repre-
sents the patterns of practical simple feeds. The geometrical
terms in the integral are evaluated exactly, and the resultant

integration was performed numerically on a computer for a

number of particular cases. The second, or "indirect" method.
P

of evaluation involves treating the spherical reflector as

a paraboloidal reflector with phase errors. This method is
valid only ﬁhen the illuminated region of the spherical
refleétor being considered does not differ: from the best

fit paraboloidal reflector by‘more than a small fraction of

a waveléngth. The cases of greatest interest are not excluded
by this requirement. Approximations are made for the phase
errors introduced by spherical reflectors, and a simplified
11lumination pattern is assumed. With the introduction df

a few dimensionless variables general fomulas are derived

- relating antenna gain to values of feed parameters, reflector

dimensions, and waveleng&hh.

The last section is a summary which unifies the results
obtained by the two methods offanalysié. It also presents
the results of the calculations in such a way that the reader
may use them to designh point feeds without having read the

derivations.



IT. DERIVATION OF THE PATTERN INTEGRAL

The far-field secondary pattern of a reflector type
antenna is the two dimensional fourier transform of its

gperture illumination (Kraus 1966, p. 167).

| | N
B(e) =% [] B(x,y)exp($EEE)axdy (1)
A~ aperture

where E(x,y) = magnitude of the illuminating field-pro-
jectedronto a plané above the reflector
‘surface |
) X = path length from feed to point of obser-
vation.
¢ = polar angle to the point of observation
A = wavelength of the illuminating radiation

The reciprocity theorem (Kraus 1950, p. 252) states that the
transmitting and receiving patterns of a given antenna are
identical. However, the transmitting pattern is usually
easier to-imagine;  and many standard terms, -such as "illum-
ination' are used in a way which implies transmission rather
than reception. For thesé reasons, only transmitting patterns
will be calculated in thls report; but the results will apply
to béth transmission and reception.

Application of equation 1 to point fed spherical reflec-
tors requires the introduction of a number of geometrical

parameters which are shown in figure 1.



C = center of curvature of the spherical reflector

d = distance from the feed to a point on the reflector
FF = location of the point feed

PP '= parafocal point

R = spherical radius of the reflector

r = projected radius to a point on the reflector
T = projected radius of the reflector surface
z = feed distance below the parafocal point

6 - = polar angle measured from the feed location

The locatlon of an extended "point feed” is the center of its
set of concentric equlphase spheres, The parafocal point is
defined as the'focal point of the paraboloid which best fits
the sphere over the infinitesimal region below the feed.
It is located a distance R/2 below the center of curvature,.
For gimplicity the illumination pattern of the feed is
taken to be rotationally symmetric, so that P = P(6) only.
Then equatioﬁ 1 (in polar coordinates r,¥) can be integrated
analytically over the coordinate ¥ without any further in-
formation. It is clear from the symmetry of the problem
that an optimum point feed must have a rotationally symmetric
pattern anyhow, so that no cases of practical interest are
lost through this restriction. We may now rewrite equation

1 in the polar coordinate form

2T

%E(r)exp(iéﬂle(r))[gexp(géﬁlx(r,W)sin¢)dW]rdr (2]

O— =B

il
E(0) =3
RQ

e(r) is the path length error of a ray reflected from a
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sphere. Figure 2 shows the geometry of the region over which
the azimuthal integration is to be performed. We see that

for a ring of radius r
X(r,V¥) = rcosy (3)

if we take X(0,¥) =0. Therefore the expression within the

brackets of equation 2 is equal to

21 5 2m —
f-exp(ile°ooswsin¢)dw = f,cos(jr-TCQSWSin¢)dw
Q 0
2T _
+_i‘fsin(%g1‘cosWsin¢)dw (4)

o

The second integral on the right side of‘equafion I has an
antisymmetric integrand over the interval Y=0 to ¥y=27, 80
it vanishes. The remaining integral may be evaluated with

the aild of the substitution:

u = cos¥, du = -sinvdy

Then |
. ?w (QW ) 4,% cos(%?x*sin¢u) :
cos(S—rcosysiné )dy = — du 53
o I ' Q v 1l-u

From integral tables (Abramowitz and Stegun 1964, p. 360) we
‘have the relation

1w
2(52) 1 2y y-1/2
/2P (v +1/2) ©

J (z) = 1-t cos(zt)dt (6)

Evaluation of equation 5 by equation 6 and substitution into

equation 4 yields

21T ; .
[ exp (Q%E r cos¥sing)d¥ = 27 Jo (%g r sin¢) (7)
o



Thig relation may be substituted into equation 2 to give the
pattern integral for a rotationally symmetric feed-reflector
system,

E(e) = 2% zm E(r) exp (£7¢(r)) Jo (5L r sing) rdr (8)



TTTI. DIRECT NUMERICAL EVALUATION OF THE PATTERN
INTEGRAI, FOR "COSINE SQUARED" POINT FEEDS

Two factors of equation 8 remain to be specified before
the integration may be performed. The first, E(r), depends
on the exact form of fhe illumination power pattern, while
the second, e(r), depends only on the reflector and the
location of the feed. These two factors are determined pre-
cisely in this section for cosine squared primary patterns,
and an exact relation for the secondary polar power pattern
G(4¢) is derived. The relatlon has been evaluated numerlcally
to provlde the results preaented in an earlier report (Condon,
1968). Polar patterns were also calculated for the ATO
reflector at.several frequencies and are presented here for
the first-time.

Let the normalized primary power pattern be

0 Bo|S ™2
B is a parameter which controls the primary beamwidth, and

P.'(-‘Bf-,:é) - N(B) cos®(Be), |B6 §“§2 (9)

N(B) is a normalizing factor defined by the condition

[ ] P(B,g)aq =1 : (10)

Yo

The units of P are watts/steradian. Such a single lobed
rotationally symmetric "cosine squared" power pattern 1s a
good approxlmation to the power paﬁterns of actual point

feeds (dipoles and reflectors, yagls, helices, etc.). For
this reason it is of practical value to make a preclse numeri-

cal evaluation of eQuation 8 for cosine squared feed power

7
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patterns. The form of the normelizing factor N(B) can be

derived from its defining equation 1Q. We have

T
or 2B 5
[ [ N(B) cos“(Bg) sine de d¥ =1 (11)
o o
T
2B ' 1 1
g 51g6 (L. + Cos (289)] @§‘}= (B
.
&2 X T
g siné cos(2BB) d6 = TN (B - [1- cos(zg) 1 (12)

Integrating the left side of equation 12 by parts twice

ylelds

T
sin6 cos(2BO) d§ = cos(zg) +1 (13)
1 - 4B°

OLﬁnﬂq‘

Substitution of equation 13 into equation 12 gives the desired

result:

N(E) = | o S (18)

o =
th- cos(g%) y cos(zg) + 11
-
1 - 4B

The value of the illuminating field upon reflection is

E(I‘) = - dl(r : (15)

where d(r) is the distance between the feed and the ring of

radius r on the reflectbr.



The derivation of the size of the path error length,
e(r), introduced by a spherical reflector is a purely geo-
metrical one. Figure 3 defines gll the necessary geometrical
parameters. The length of the path traveled by a ray emitted
straight down from the feed and reflected up to the center
of curvature of the reflector is (R/2 - z) + R. A ray which
igs emitted at an angle and which is reflected at a projected
radius r must travel a distence d + R cos ato reach the
hori;ontal plane containing the center of curvature of the

reflector. Thus the phase difference between the two rays

will be
2 27 [ (R : :
_ge(r)=_g[(§-z)+a_(d+Rcosa)1 (16)
from geometry we have
VR - r°
GO € ; =~z
R
and

2
(§R+Z_+ d®= - r ) +I‘2'=FR2

so that

Va2 =P =- B+2) £ - 2% (17)

2

The positive sign of the radical in equation 17 must be chosen

to insure that Vﬁz - re 1s positive.
@=r?+ B+2)2+ @17 -23 +2) VR® - r°
(18)
Equation 18 is substituted into equation 16 to yield the phase

error.
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A
4) 1/2
[(%4«2)#2 R —rﬁ ] (19)

The result has been derived previously (Perona, 1966). One

- (
glT~€(I‘)=—2—T—r'—55--2—«/1%2--1#?-?R‘QJF(-E+Z)
N2 L

final geometrical result derivable from Figure % will prove

useful, namely

=1 r
g=tan " ( 7T ——a5 ) ‘ 20
\/R2 - r2 . , (29)
. 2
Now we have enough information to evaluate equation 8,
Since the feed illumination P(6) has been normalized, we
may obtain the secondary power galn pattern over an isotropic

radiator G(®).from the relation.

a(e) = |E(0)]> (21)

A computer program was written to make direct numerical
evaluations of G(¢). All of the relations that are used in

the evaluations are 1isted in equation 22 below.

Equation 22:

or L1/P or T sind o 2
G(o) = |_% J &i:_ Jo (=L -} eOB (—%5) rdr| .
2T€

i B
=l B

d
o]
g . .
. |§E fmng_ Jo (2w ; 81n¢) sin (
o]

(equations 8, 15, 21)
where |



1,

act A uJ v j]’t\ Jé r(‘c :1
( TeatJ:us uﬁ. Clw\f.'z‘i‘-‘-v-b

CcoSs

- 2
2 -1 .
B tan S 3 - - % _ Z)}

R,2)
T ] —
j E{! ﬂ!' 'l“’\ T COB ,,_”,T__ + l
‘ 1 - cos(iﬁ) + (3 )

Rd‘clrl,(f Of(r\ "e-li?fec.*!rﬁ‘f‘ annn fug

(equations 9, 14, 20)
'YI“\ Qte @ Vo

and %g e(r,R,z)

O

. : S 1/8
= 2L v/ir_*—?‘ R & (2 + z) {Qg +z) - 2‘/§2 - rg]}

A 2 =

(equation 19)
The Bessel functions Jo(r,o,\) were evaluated from the

formulas (Abramow1tz and Stegun 1964, p. %60 and p. 364)

L

p =0 i ,m r sin¢ 21 2 .o i
Jo (2T z sing) _ (-1)* (T5——2)", Sr rsine L 2
i=o0 (i 1)°
JO(EW ; 51n¢) = /— A COS(QW K sing _ %), %% A FE 3P
T r.osiné . '

Equation 22 was evaluated for a variety of frequencies 2. em (8
y 1E W it

and values of the feed parameters B and z for the Arecibo

[t - WY 1)‘\FL1)

reflector (R = 265 m, ry =152 m). The variation of effective
collecting area with the parameters B and z for the fre-
quencies 74, 195, 430, 610, 960, and 1420 MHz was presented
graphically in an earlier CSUAC report (Condon 1968). The

values of B and z which maximize the collecting area of the )

Arecibo reflector Were determined from these graphs; they =
obey the relations _ ' ;ﬁf
1/2 11 MY 0, §bb i & 021 '
7z = 3.5 A / 145 @ b ) (23)
B = 2,05 R 1/4 (e 2.ye @ b1 M 52. (24)
rii ) X
3 - N ) : ; ‘\ Y . i 2 N - . 0 ‘
HI o .;' 'Ha ﬂl [a{\(l “I" 1 ’L‘“‘q ! :l) ‘?"- ? A f ) : o /l ‘f\ i". [f':‘ ¥ A

n -~ 4y I N N IS g - O
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where the lengths z and A are expressed in meters. These
optimum feed parameters were then used in the calculation of
polar diagrams at the frequencies T4, 195, 327, 430, 611,
960, and 1420 MHz. (See figures 4-10.) All of the polar
diagrams are similar to those of uniformly illuminated cir-
cular paraboloids of wavelength dependent diameters. The
theoretical Arecibo antenna gain,beamwidth, position of the
first null, and position and level of the first sidelobe
are nearly the same as the corresponding parameters of a

uniformly illuminated circular paraboloid of diameter

7 oc

: 4 pwE
D = 149 h1/4 243 feet ot wigo Mz 1zbh“f{m%ﬁq25)

£

PO PN

where D and A are expresséd:in'%étéfs. .For example figure 11
presents the superimposed polar diagrams of a unidH rmly
illuminated 149 meter (490 foot) diameter circular paraboloid
and of the Arecibo antenna with an optimum cosine squared
point feed at a frequency of 300 MHz (N =1 meter). There
is a significant difference between the depths of the first
nulls of the two curves of figure 11, the null of the pattern
of the spherical reflector being rather shallow. This effect
is caused by phase errors (Silver, 1949, p. 186) which are
unavoidably associated with point fed spherical reflectors.
Inrpreparation for the design of a feed for the 611 MHz
multiple beam survey system (to be described in a later
report), polar diagrams for the Arecibo reflector were cal-
culated for a numbéf of values of the feed parameters B and
z at 611 MHz. Figure 12 shows the calculated variation of

secondary beamwidth with the feed beamwidth parameter B for
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five values of z. Those portions of the curves of figure 12
which are to the left of the broken line represent the per-
formance of the antenna when the reflector is over=illuminated. .
The reflector may be considered "over-illuminated" when the
illuminated region extends beyond the circle of rapidly
changing phase error (see figure 18). Figure 12 shows that
for a given value of z it is not possible to decrease.the
secondary beamwidth significantly by ever-illumination.
However, the beamwidth does depend on 7z, the distance of the
feed below the parafocal poiﬁt, since the radius of the
circie—defining the over=illunination fegion?is;prpportional
to 21/2. Apparently'the cosine of the phase angle of radia-
tion reflected outside this circle changes so abruptly with
radius (see figure 19), that the portion of the reflector
outside the circle is efféctively-invisible to the feed.

Figure 1% shows the dependence of the first sidelobe
level on the feed beamwidth parameter B for four values of
z. Once again, the distance of the feed below- the parafocal
point is the more critical parameter. The feed beamwidth
does effect the second sidelobe significantly, though.
Figures ‘14 and 15 show the antenna diagrams at 611 MHz for
g = 2.47;and B = 2,05 and B = 2.86 respettively.

Both B and z are important in the determination of the
effective collecting area. Figures 16 and 17 present the
variation of effective collecting area at 611 MHz with B

and z respectively. /
)\ = 0, ¢ 904w
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The results of the next section will show that the
particular results presented here for the Arecibo reflector
at 611 MHz may be scaled to apply to different reflectors and

different frequencies.



IV. GENERALIZED INDIRECT EVALUATION OF THE PATTERN
INTEGRAL BY THE PARABOLOIDAL APPROXIMATION METHOD

Although the direct, that is, "brute force," method of
Section III for evaluating the far field pattern integral
is capable of producing precise and useful numerical resulﬁs
for particular cases, it is too unwieldy to be generalized.
Also, it does not present the functional dependence of G(é)
on the parameters B, z, A, and R in a simple enough way that
an intuitive understanding of the dependence is pos§ible. It
is therefore worthwhile to look for an approximation method
which does not suffer from these two defects. One such
method, which may be called the "paraboloidal approximation
method," is presented in this section.

The shapes of asPheficalrefleCtOT with radius of curva-
ture R and of a paraboloidal reflector with focal length R/2
are very nearly identical over the regions which can be
successfully illuminated by a point feed. Consequently, the
only significaﬁt differences in antenna gain between a
spherical and paraboloidal antenna arise from the phase
errors associated with spherical reflectors. Even the
phase errors are small. Numerical results of Section III
indicate that the_Eig;@gmwggggw;gnggh_grpoglfor a ray reflected
from a point fed spherical reflectdr must be less than O.Eﬂ?gl
otherwise the gain deteriorates badly. Thus one way to find
the galn of a spherical antenna is to treat it as a para-

boloidal antenna with phase errors. Such an approximation

15
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method will be valid for all cases except those in which the
phase errors become very large; that is, those cases in which
the reflector is seriously over-illuminated.

In this section a polynomial expansion of the phase
error introduced by a spherical reflector is derived. The
phase error approximation is used to calculate the efficiency
correctiaon on the gain of a paraboloidal reflector of equal
focal length, resulting in an expression for the gain G of
the spherical antenna which shows clearly the dependence on
B, z, A, and R, It is assumed that the illumination does not
spill over the edge of the reflector, so there is no depen-
dence on ry. The parameters B and z of feeds which maximize
the gain are given in two simple formulas.

The path length error e(r) of a ray reflected from a
spherical reflector is (equation 19).

efr) = %? -z« R - £ - YR® + (g + z) f(ﬁ +z) - 2 R® - ré]ll/g

2

[
Tet ro be defined ags the value of r for which |e| has a maxi-

mum, Then

It =0 (26)
e _ (—R + &) ) -0
VR® - p= {l & . 15|
r ‘ J\-?+ (gq«z) [(%+z) - EVRE —r_OE:I% _l
2
xS = R - (Rizz)2

This expression for rg may be rearranged to give



17

. { 1+ (g
ts = bRzl 40%) ’ 4(%)2 (27)

At this point it is convenient to define two dimensionless:

variables. The first is

=

Fol 0

(28)

£ is the ratio of the feed distance below the parafocal
point to the spherical radims of the reflector., It will be
small compared to one, SO that we may approximate rg by

expanding equation 27 to second order in E.
2 [ 2
r, = YRz |1 - % € + 0 (£€7) (29)
The second dimensionless variable, k, is defined by the
relation
k = /7, (20)
Using equations 29 and 30 we obtain the following expansion

for the path error length ec.

€ = RL% -1 - KUE(L - 3E) - €

—gl + (%— + é)[_ % + & - 2v1 - kK7UE(L - 3451 2\1/2]

—-—

~

+ R+ 0 (£7) (31)

We continue the expansion of equation 31 with the relation

VI JKPHE(L - 3£) = 1 - 2kPE(1 - 26) - 2 (kP€)% + 0(E”)



18

bo(2k® -1) € - (6k% - 2kt €P

m

Il
—
|+

{1 + (5 +€) [--g- fP r 1) £ -2 (662 - k™) QEPUQ]
\_ - )

+ R+ 0 (£7) (22)
If a Taylor expansion to O(&B) of the square root term of

equation %2 is made we obtain

¢ = R L% - (ek® - 1) £ - (k2 - okt P
1l 2 4 2 2
- 531 +2 (%% - 1) € +2 (2k™ - 2k~ *+ 1) €
S2 (22 - 1)2 € g] +R .0 (&) (33)

e

Many of the terms of equation 33 cancel, le aving

e = -4re? (2% - k*) + R - O (&) (34)

e/(4R€2) is plotted as a function of k in figure 18. Note
the suddenness with which the pagp error increases for
k>1.6. If we substitute K? ='ﬂ%2;into equation 34 and
multiply by ew/k we obtain the désired polynomial expansion

of the phase error introduced by a spherical reflector.

2 I
2T 20 7 r

5(r) = &8 (- &= + 75
» ( a2 4R3) (35)

The cosine of the phase error for optimum z (equation 23]
is shown in Figure 19. If the illumination of the reflector
extends beyond k = 1.6, the reflector is considered to be

over-illuminated in the sense described in Section III.
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The efficiency 7N of a paraboloidal reflector is re-

lated to the phase error distribution by (Ruze, 19606)

r——

n=1- (8% -3) (36)

where oq 5
— o f(r) 8°(r) rdr

° /%@ £(r) rar
0

dfmo | 5
2 _| o f(r) 6&(r) rdr

—quf(r) i J

f(r) is the projected illumination power density on the
reflector surface., The units of f are (watts/meterg).
Ideally f(r) should represent the illumination of a cosine
squared point feed. A compromise f(r) wesschesen was

~actually chosen so that subsequent integrations could be

performed analytically. Let
2 .
r(r) = (=) (L-z—), olryr (37)

Yo o’ B

f(r) = o , P R

This is a linearly tapered illumination. < is the illumina-
tion width parameter, and it may be related to the feed
beamwidth parameter B through the condition that the ildeal
cosine squared illumination‘and the linearly tapered
illumination vanish for the same value of r. ‘For reason-
ably small © we have then

- 2r
emax = max

R
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so that
p=T2X
rmax
B ' /5 (38)

" When B and v are related as in Equation %8, the linearly
tapered i1llumination is a very good approximation to
11lumination from a cosine squared feed. See Figure 20
for a comparison of the two illumination tapers.

We now proceed to find n of eqqation %26, We: assume
that the illumination does not spill over the edge of the

reflector, so that the upper limit of'integration is

&= 'Yrb' \ | h 2
fvro 1 (l __F Mwerfﬂrz + S _ Egé)rdr
- (wro)g \ Ve | 3 KTEE 1680 R,
o IVTO 2 (l - \ rdr
°  (yr))® . "o
— 2 2 % _ 4 6 _ 6 8 _ 8
52 = &Iﬁ (12z I N A % ro6) (39)
| A 21R 12R? 1760R
, .2
R ~ s ] N\
: 2r- 7 b\
o g2 () S (T i) ™
1 52 _ (v%,) L /) R 433)
| N L% 1 r '
| "o —+—— (1 - &) rdr
© (vr)® L
| e O i
\
) AR rou 5 e I,06 /B r08 £
52 - A — - * 5 40)
- 25 R 70 R? 784 R° ) (

Equations 39 and 40, with r02 replaced by 4Rz, are now sub-

stituted into Equation 36.
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n =1 - gt (= 5) 592 4 _ 272 6, 1472 8) (41)

v'o- vt v
e 175 105 ' 2695

A new dimensionless variable .,

wI L)

R T

is substituted in order to reach the final form of T, which

contains only constants and dimensionless variables.

, 6 8
2 h (592 4L 272 PO ) (43)

no=1-Aret (375 Y - 105 Yt 3695

The effective collecting area A of a spherical reflector
with a cosine squared feed is approximately equal to the
product of the reflector efficiency m, the geometric
1illuminated area, and the aperture efficiency @ of a

circular paraboloid with a cosine squared feed.

A=n(rv?r?)a (44)

@]

Q 1s defined by N

yr, 2m - '
9 (I- f \/JOS -5-;‘-/———) r d‘i’d?r'] l (’m‘/g " 2)-

o)
Yo T T '}
'fo IO COS (§ —_I;;) r d¥dr
Evaluation of equation 45 yields
o [3-1° |
Q = S L2 = 0.72 (46)

2 2 &
T | v _ 1
Ey
If we replace r02 by 4Rz in equation 43 and then substitute

w = z/ VAR we obtain

A= (47Q) (hl/g RB/E) (n) can) (7)

With the substitution of the right side of equation 43 for

1n, equation 47 becomes
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o 1/2 .3/2y | .2 25 (592 6 272 8  1u72 10)

(48)
Equation 48 is the general equation for the collecting area
of a spherlcal reflector with a cosine squared point feed.
It is composed of just three factors. The first, 4rQ, is
just a number,9.l. The second factor,(hl/2 R3/2),depends
only\on the wavelength and the spherical radius of the reflector?
The third, in braékets, is purely dimensionlessj and it can
be maxim;zed independently of the second. Therefore the
maximum effective collecting area obtainable from a point
fed spherical reflector is proportional to the square root
of the wavelength and the 3/2 power of its spherical
radius. Furthermore, the optimal values of v and u, which
determine the feed parameters B and z, are the same for
all reflectors and all wavelengths. We proceed by determin-

ing the wvalues of vy and p which maximize A by requiring

that
(3, =0 (19)
(3, =0

Application of the conditions of equation 49 to equation

48 results in the simultaneous algebraic equations below.

2 272 6 , 1 8
0 =1 - zonfut 2Byt - HEAC ) (50)
0 =1 - ar?ut (3852 . 2176 6 , 2944 8,

175 105 bZo
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The simultaneous solutions are

v
L= 0,212

1.62 ' (51)

The optimal fundamental feed parameters B and z are determined

by v and u through equations 28 and 42. Their values are

1/4 o & al {4
B = 0.52 (%) ) A pe@ et (52)
) 1/2 =] nfi; ) '
z = 0,21 (RA) b, (T xTd (53)

If the optimal feed parameters are used, then the collect-

ing area which can be obtained 1s

) A= 4.1 (';\1%3)1/2 (54)

The value of efficiency n is

P

n=0.8L L TR e Jo o (55)

Thus the phase errors introduced b& an optiﬁéiiyrﬁéint fed
spherical antenna reduce its gain by about 0.9 db.

A generalized plot showing the'variation of A with
illuminated radius for various z and given A and R cén be
made from equation 48, Figure 21 is such a plot; the
absclissa yul/g is proportional to i1luminated radius, and
the parameter | is proportional to z. The curve labeled
"paraboloid" in Figure 21 was made by taking n= 1, in

equation 48,



V. SUMMARY

The results of the two different methods of investigation
just described compliment each other nicely. They can be
used together to provide more information than both could
provide separately. The direct method yields exact polar
diagrams far specific cases, while the indirect method shows
how the collecting area scales with the wavelength A and

e e e e A A S

reflector k@dius of curvature RJ- The direct method also

provides verification of the accuracy of the indirect
method, which involves several approximations. The
dimenéionless variables introduced in Section IV are used
to derive formulas which are invariant under changes of A
and R, showing that the phase error distribution across the
illuminated region of an optimally point fed spherical
reflector is independent of A and R (Figures 18 and 19).
Therefore, we expect that the detailed polar disgrams of
optimally point fed spherical antennas also scale, thus
providing a justification for the concept of the "equivalent
paraboloid"” of equétion 25 and permitting generalizétion
of the qualitative digcussion at the end of Section IIT
about the variation of sidelobe level and secondary beam-
width with the feed parameters.

The problem of designing the optimum cosine squared
point feed (that is, the feed which maximizes the effective
collecting area of the reflector) is considerably simplified

by these scaling properties. Assuming a feed power pattern

24
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P = N Cos®

(89)

where N is a normalizing factor, the two feed parameters
which remain free are the feed beamwidth parameters B and the
feed distance below the parafocal point z. (See Figure 1.)

For a spherical reflector with radius of curvature R and

for w;;élength A\, the values of B and z which maximize the
3..3_0."\‘;'!-_,{5 é W 3-7 c b

effective collecting area are ¥ L GHy
! 1 4 e / g
f&) :—??0 PJ' : B e 0_52(_%) 2.2 4 !, G 7, ey 7 T
TA68TD M P I S ot
z = 0,21 (R7\)1/2 b2 fea 740 84 cem (33 inc Lma-\‘) bl oem

(24 el

These relations hold only when they do not suggest illumina-
tion Eéyond the edge of the reflector surface. They are
valid for all frequencies above 70 MHz for the Arecibo
reflector, for example., The effective collecting area

of the reflector is then

7.0/,

3 1/2 &ty T g 2 ._ . [A :
A= 4,1 (AR") (179 m 17499, 4 337 m 3307 .7

The forward gain G over an isotropic radiator is related

to the collecting area by

G’ = &-‘]—T- A :Z)f. _55 ::‘E- :] S.“.j IIJL;?I ! Yo t'.'—l L ,7‘7'? \‘
2 -
A
The effective collecting area of the Arecibo antenna 1is
usually described in terms of its sensitivity T, which is
defined as the antenna temperature produced by a 1 flux
unit source, If the effective area of the antenna is

expressed in units of (meters)e, then

4' [,-S_r? k/f [.%] }\/".
T = %,62 « 10" A OK/flux unit (56) 3' )

0 4% T

A e Lo 1o

<
}]
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The secondary pattern of a spherical reflector with the
optimum cosine squared point feed is very similar to that

of a uniformly illuminated paraboloidal reflector with
L cl 1Y% N’ 1.4

projected diameter D where ‘
l/l’L H¥Puw: 23 '

HD

D = 2,26 (ARB)

'
2 a0 g j o !

The effects of deviation from the 6§£1%uﬁ“feed paraQ'

o, 9.11.(..“\‘
meters cannot be described so simply,., An earlier report
o :"‘-'E\' o /, ?C i B A Ao ‘I,“r""

(Condon 1968) shows the dependence of effective colleeting
area on the feed parameters for the Arecibo reflector at
several frequencies. Over-illumination (too small a value
of B) results in almost no narrowing of secondary beamwidth
unless z is simultaneously increased. The sidelobe level
depends primarily on Zz. lFor examples of these effects,

see Figures 12 and 13,
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FIGURE CAPTIONS

Figure 1 =-- Geometrical parameters of a point fed

spherical antenna

Figure 2 -~ Tntegration over the azimuthal coordinate ¥

Figure 3 -- Path length of a ray reflected from a
sphere

Figure 4 -- Abscissa: Polar angle ¢ (degrees)

Ordinate: Gain (decibels)

Parameter: Frequency = T4 MHz

Figure 5 -- Abscigsa: Polar angle ¢ (degrees)
| ordinate: Gain (decibels)

Parameter: Frequency = 195 MHz

Figure 6 -- Abscissa: Polar angle ¢ (degrees)
Ordinate: Gain (decibels)

Parameter; Frequency = 327 MHz

Figure 7 =- Abscissa: Polar angle ¢ (minutes)
Ordinate: Gain (decibels)

Parameter: Frequency = 430 MHz

Figure 8 -- Abscissa: Polar angle ¢ (minutes)
Ordinate: Gain (decibels)

Parameter: Frequency = 611 MHz
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Figure 9 ==

Figure 10 -~

IM.gure 11 ==

Figure 12 =--

Flgure 17 ==

Figure 14 --

29

Abscissa: Polar angle ¢ (minutes)
Ordinate: Gain (decibels)

Parameter; Frequency = 960 MHz

‘Abscissa: Polar angle ¢ (minutes)

Ordinate: Gain (decibels)

Parameter: Frequency = 1420 MHz

Abscissa: Polar angle ¢ (minutes)

Ordinate: Gain (decibels)
Parameters: Frequency = 300 MHz
spherical reflector,

paraboloidal reflector

'Abscissa{ Feed beamwidth parameter B

Ordinate: Half-power beam width (minutes)
Parameters: Feed distance z below the
parafocal point (meters)

Frequency = 611 MHz

‘Abscissa: Feed beamwidth parameter B

Ordinate: Level of first sidelobe relative

to main beam (decibgls)

Parameters: Feed distance z below the

parafocal point (meters)

. Frequency = 611 MHz

Abscissa: Polar angle ¢ (minutes)

Ordinate: Gain (decibels)
FV"&I\,&W\ cﬁ N éHM HZ



Figure 15 —-

Figure 16 --

Figure 17 =--

Figure 18 --

Flgure 19 --

Figure 20 --

Abscisgsa:

Ordinate:
FV‘&ﬁue.v\oa, H

Abscissa:

Ordinate:

Parameter:

Abscilssa:
Ordinate;

Parameter:

Abscissa:

Ordinate:

Abscissa:

ordinate :

Abscissa:

Ordinate:

Parameters: P

30

Polar angle ¢ (minutes)

Gain (decibels)
b it MMy,

Feed beamwidth parameter B
Effective collecting area (1. unit =
10% ¥°)

Feed distance-z below the

parafocal point (meters)

Feed distance z below the prafocal
point (meters)

Effective collecting area (1 unit =
10" u?) |

Feed beamwidth parameter B

Dimensionless radius k
Dimensioniless path length error

e/ (4R &°)

Dimensionless radius k
Cogine of reflector phase error

for optimal feed location

Dimensionless radius k

Relative power

1l

power of cosine squared feed

F

Il

power of linearly tapered feed



Figure 21 --

3,
1/2

‘Abscissa: Dimensionless radius yu

Ordinate: Dimensionless effective area
petr / (W2 8Y/2)
Parameter: Dimensionless feed distance

below parafocal point .
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F ierany

i

Defining Equation

the reflector

%2

ﬁémé wmpéggfgﬁﬁiogrw:_w?:rdr?n or Figure

A snténns eftective colléeting
area,

B. feed beamwidth parameter Equation 9

C spherical reflector center of Figure 1
curvature '

D diameter of the "equiwvalent Equation 25
paraboloid"

d distance from feed to a point Figure 1
on the reflector

R magnitude of electric field
vector

I feed location Figure 1

£ linearly tapered reflector Equation 37
illumination pattern

¢} power gailn over an isotropic
radiator

JO zeroth order Bessel function

k dimensionless radius Equation 30

N Cosine squared feed power ‘Equation 10
normalization factor

o feed pattern, power per unit Equation 9
solid angle

PP parafocal point Figure 1

Q .aperture efficiency of a circular Equation .45
paraboloid with cosine squared
illumination

R spherical radius of the reflector Figure 1

P projected radims to a .point on Pleure L



Defining Equation

Némer bescriptioﬁ or Figure

B projected radius of the reflector Figure 1
surface

r, projected radius with maximum Equation 26
phase error

I antenna sensitivity in degrees Equation 56
per flux unit

Z feed distance below the parafocal Figure 1
point

a angle between the vertical and a Figure 3
line segment connecting the
spherical center and a point of
the reflector

Y reflector illumination width Equation 37
parameter

5] polynomial approximation of Equation 35
phase error due to reflection
from a sphere

€ path error length due to reflec- Equation 16
tion from a sphere

ul reflector efficiency Equation 36

e polar angle measured from feed Figure 1
location

A wavelength
dimensionless feed distance Equation 42
below the parafocal point

E dimenslonless feed distance ‘Equation 28
below the parafocal point

¢ polar angle from reflector Figure 2
normal to point of Equation 1
‘observation

X path length from feed to point Equation 1
of observation

L azimuth angle Flgure 2
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APPENDIX T

If a line feed is skewed so that it does not lie along a

radius of the reflector which it illuminates, then both the

form and position of the secondary‘pattern_which they produce
are changed. In this appendix we consider the effects of
skewing a line feed of length to S0 thaﬁ its lower tip is dis-
olaced a small distance X frém the radius thnaugh its tops
The primary field pattern F(r) is taken to be circularly sym-
metric so that any small segment of the line feed uniformly
illuminates a ring on the reflector. Thé relation between the
distance t of the segment below the paraxial surface and the

radius r of the ring which it illuminates is (Lalonde and -

= 2 P . 1
1 - I‘_/R = ~—-—————“2_t

where R is the spherical radius of the reflector. If ¢ is the

Harris 1970)

angle between the two radii passing through the top of the feed

and through a point a_distance t from the top, then, by geometry

o o) - @ - M- )

Tk



The polar field pattern E(4) produced by a uniformly illuminated

ring of radius r and width dr is

om 2rr sin
E(g) = 2 I, ] d

The power pattern produced by a skewed line feed 1s thus

P(ﬁ) _ }%2[ f"’F(r) J‘O (27r r sj_)r\l(,qf—#wj/(r)) dp 2

This integral was evaluated numerically for a simple approximation

to the illumination tapér F(r) of the 606 MHz line feed (LaLonde,

private communication). The effects of skewing on forward gain

and position are given approximately by equations Al and A2

helow.
AF = 3,3 X, (A1)
: ; 5 N %yhuéi ‘
G/Go = 1-(x;)°/20 = |- f\@ ' (A2)

= | = QLY

where ‘Aﬁ = position shift in arc minutes

- # G/GO = relative gain
X, = diSplacement of feed tip in feet
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