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Summary
This is a technical user guide for the PDEV spectrometer.  The first portion of the document is a 
user guide for operation of the spectrometer.  The second section is technical information for 
extending operation of the spectrometer.

Terms
Here are a few terms used throughout the document, it's useful to know a few of these terms 
upfront.

PDEV This refers to the entire spectrometer, the hardware and the software on both the 
spectrometer and the fileservers used to control it.  The name doesn't mean 
anything.  The name was chosen at the beginning of “development” and lives on 
as the name of the spectrometer.  Sometimes it's uppercase, sometimes 
lowercase.

GX GX refers to the signal processor FPGA in the spectrometer.  There are two 
FPGAs in the spectrometer, usually referred to as GXA and GXB. GX is the entire 
FPGA, the internal design of the FPGA is broken into separate pieces with 
different names.

SP The FPGA design is divided into two pieces.  SP is the signal processing 
datapath in the FPGA.  PDEV is designed so that SPs  for other purposes can be 
dropped into GX and take advantage of the rest of the system without too much 
effort on the part of the developer.  SP sometimes refers to the default signal 
processor used for EALFA/PAFLA processing, but I try to use SP1 to when 
referring to the default SP design.

SP1 The default signal processor. This is the signal processor design for the FPGA 
used for EALFA/PALFA processing.  It does a dual polarity PFB with a 
programmable transform length from 16-8192 points.  It does full stokes 
calculations and has an efficient method for dumping only the data required for 
the observation.  In rev.2 it adds a complex mixer, a digital LO, and a decimating 
low pass filter for high resolution frequency bins.  Rev.3 adds time domain 
dumping from the decimating low pass filter and more control for generating a 
calibration output signal synchronized to the polyphase filter.

SPEX Simple example signal processor. This is a simple SP design, it doesn't do 
anything useful, but serves as a simple example for someone that wants to write 
a new SP.

PFB Polyphase filter bank.  A PFB is an improvement over the FFT that converts a 
signal to the frequency domain with much great channel to channel separation 
than is possible with an FFT.
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FIR Finite impulse response filter.  In this application usually a low pass filter 

DLPF Decimating low pass filter.  A low pass filter that reduces that bandwidth limits the 
input signal and reduces the output datarate of the filter by an integral multiple.

HR mode In rev.2 of the FPGA, a decimating low pass filter can be inserted into the signal 
path to generate frequency bins as narrow as 12Hz for high spectral resolution 
processing.  When the decimating LPF is enabled this is referred to as HR mode.

plinth Plinth is everything in the FPGA besides the SP.  The plinth code provides a 
register interface to the powerPC processor in the spectrometer, a DMA interface 
for dumping data, a large QDR SRAM FIFO for buffering realtime data from the 
SP to the non-realtime world.  Plinth contains diagnostic code for testing the path 
from the ADCs, DMA, and FIFOs, measuring signal levels, and synchronizing 
observation starts across many PDEV boxes to PPS.

pnet pnet is the program used to control a network of spectrometers. pnet is written in 
perl and is run from a server machine.  It reads configuration files for details 
about the observation and communicates with many spectrometer boxes and the 
file servers used to store data.  It coordinates a synchronized observation across 
many machines and checks the integrity of the network of machines to make sure 
that the spectrometers are running off the same ADC clock,  running the same 
version of the software (and many other things).

prun prun is the application programming running on the spectrometer CPU that 
manages the observation.  Prun is started when pnet connects to a spectrometer. 
It writes the FPGA registers, starts the observation, sends data to the fileserver 
(psrv), and reports observation status back to pnet.  One copy of prun runs for 
each FPGA on the spectrometer box, so there are typically two copies of prun 
running on each spectrometer box during an observation.

psrv Psrv is the program running on the fileserver during an observation.  Psrv is 
started by prun on a spectrometer.  It receives data from prun on the 
spectrometers and stores data on the local filesystem in a special PDEV file 
format.

pmon Pmon runs on the spectrometer and monitors the hardware status.  It keeps track 
of temperature, voltage, and fan speeds.  Pmon will power down the FPGA and 
keep pnet from running if something is out of spec. Pmon controls the tiny LCD 
display on the front of the pdev boxes.

The Spectrometer Box
The spectrometer box contains a powerPC processor running Linux.  It is an 800MHz CPU, so the 
box probably has about 25% of the processing power of a typical 2006 PC. The processor 
manages data movement from two large FPGAs to the gigabit ethernet ports.  Most of the signal 
processing in the box is done on the two large FPGAs.

Each FPGA is connected to an analog board with four 12-bit ADCs.  The bottom row of SMA 
connectors on the front of he box connect to one ADC board, the top row of SMA connectors 
connect to the other ADC board.  The two rows of SMA connectors are normally associated with 
two sub-bands of signal processing.  A row of four SMA connectors is normally associated with 
two polarities of two complex signals.
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There is an SMA connector on the back of the box dedicated to the sample clock for the ADCs. 
The clock signal should be a 0.5v sine wave from 100-200MHz.  The box has an internal low jitter 
156.25MHz oscillator that can be used as the ADC clock.  In this case the sample clock is not 
referenced to an external source.

There are four SMA connectors labeled GP0 – GP3 for digital I/O on the back of the box.  These 
are for PPS, cal, blanking, and a synchronized cal output.  Each of the four connections are 
identical and software configuration lets you assign functions to the connectors. Each of these 
connectors can be a digital input or output controlled by the FPGA.

There are two independent gigabit ethernet ports labeled A and B.  The B port is currently unused 
but it is simple to enable this port if it is needed.  The MAC addresses of the ethernet ports are 
stored with the serial number of the box in a tiny EEPROM on the CPU board.  The MAC address 
is related to the serial number as follows.  If the serial number of the box is #0123, the MAC 
addresses are:

Port A: aa:bb:cc:01:23:00
Port B: aa:bb:cc:01:23:01

The MAC addresses are shown in the LCD display shortly after reset.

There are two DB-9 PC-style serial ports on the back of the box.  These are 3-wire serial ports 
(Tx/Rx/Gnd), they do not have any RS-232 flow control signals.  The first serial port is used by the 
boot ROM to print diagnostic messages. These serial ports are currently unused after booting but 
will likely be used to control mixers is the commissioned system.

The front of the box has a 128x64 LCD that is primarily used for displaying system status.  In 
normal operation pmon uses the display to show fan speed and temperatures.  The DNS name of 
the spectrometer box is displayed in the lower left corner of the display and if an observation is 
taking place the name of the observation is in the upper right corner.

The switch on the front panel is a reset switch.  There is a mains power switch on the back of the 
box near the power plug.

Booting the Spectrometer
The spectrometer box can be booted a few different ways.  It can boot linux from on-board flash, 
but this is an advanced topic.  The primary method for booting the spectrometer is using DHCP 
and TFTP protocols over the A ethernet port.

The spectrometer box has an 8MB flash chip that is partitioned into three areas.  256kB of the 
flash contains a boot ROM.  768kB of the flash is set aside for a small file system to contain local 
system parameters (like a static IP address if needed), the remaining 7MB of flash is reserved for 
a system image file if the box needs to boot standalone.  For this discussion we'll only consider 
the 256kB of boot ROM and network booting.  The boot ROM is the first code executed by the 
powerPC after power-up or reset.  This code uses the first serial port as a console, but this is 
rarely needed.  For diagnostic purposes, you can connect a serial cable to a PC at 115 kbaud and 
see all of the boot messages, interrupt the boot process, and enter commands into the console.

Normally, the spectrometer will check to see if there is a valid boot image in its local flash.  If this 
boot image is not valid, the spectrometer will use DHCP to get an IP address and the IP address 
of a TFTP server and the filename to boot.  All of this information must be provided by a DHCP 
server.  A typical DHCP server entry for the spectrometer might look like:
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host pdev-101 {
hardware ethernet   aa:bb:cc:01:01:00;

     fixed-address       pdev-101.mock.com;
      option host-name    "pdev-101.mock.com";
      filename            "pdev";
}

The spectrometer will next use TFTP to try and load the boot file from the TFTP server.  The boot 
file is a compressed image of both the Linux kernel and the root filesystem.  This file is typically 
about 4MB.  Once the file is loaded and uncompressed, the Linux kernel is booted with a root 
filesystem in RAM and Linux takes over from this point.

The boot ROM puts a few progress messages on the LCD display, more messages are sent to 
the serial port.  Once Linux boots, the LCD is controlled by a device driver in Linux kernel. After 
the Linux kernel is booted, startup scripts will configure the FPGAs, setup the network interface 
and start the hardware monitor application.  Booting is complete when temperature and fan speed 
information are displayed in the LCD.  It should take about 30-seconds to boot a large network of 
spectrometer boxes from the network.

Observation Overview
Each spectrometer box contains a powerPC processor running Linux and two FPGAs that each 
do signal processing on a 170MHz sub-band.

Figure 1 shows the relationship of pnet, prun, and psrv during an operation.  pnet is typically run 
from the command line with an option that specifies the configuration file to be used for the 
observation.

Pnet makes a connection to the spectrometers and starts prun for each FPGA to be used in the 
observation.  Typically there are two copies of prun running on each spectrometer for the two 
FPGAs.  In a typical ALFA observation pnet will manage 14 network connections, 2 connections to 
each spectrometer box for each beam in ALFA.

Pnet is typically run from a server machine, but can probably be run from any Linux machine on 
the observatory local area network, the bandwidth requirements are low but it does need to 
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maintain several connections.  During an observation, pnet will receive status information once 
per second from both prun and psrv (through prun).  Depending on the debug level, pnet might 
print out a lot of this information.

Prun runs under Linux on the powerPC processor on the spectrometer box.  It is started when 
pnet makes a network connection to the spectrometer.  A copy of prun is started for each FPGA 
used during the observation.  The start of the observation is synchronized to PPS, but the DMA 
and data storage for each FPGA take place independently.

Psrv runs on the fileserver and is started when prun makes a network connection to the fileserver. 
It is a simple program that stores the data dumped from the spectrometer in a PDEV specific file 
format.  It reports status back to prun which in turn passes the status back to pnet to report to the 
user.

pnet.conf
Observations are primarily setup with the pnet.conf file.  This file specifies the spectrometer 
boxes to use the for the observation and register settings for the observation.  The default signal 
processor for EALFA/PALFA has a large number of registers and configuration options.  The 
pnet.conf file can be reasonably complex.  Typically, a pnet.conf file might be setup once for a 
given type of observation and used for many observations.  Real example pnet.conf files can be 
found in /usr/local/pdev/etc on the machine where pnet is intended to run.

The file format is a free-format text file.  Lines beginning with # are comments, blank lines are 
ignored.  The file is broken into sections with each section containing specific parameters. 
Consider the following simple file:

# Sample pdev.conf file for testing
#

[pdev]
# name   IP address  Beam    Subband sp  setup   file server
#
beam0x   pdev-103    0       0       0   gxa     fs1
beam0y   pdev-103    0       1       1   gxb     fs1
beam1x   pdev-104    1       0       0   gxa     fs2
beam1y   pdev-104    1       1       1   gxb     fs2
beam2x   pdev-105    2       0       0   gxa     fs3
beam2y   pdev-105    2       1       1   gxb     fs3
beam3x   pdev-106    3       0       0   gxa     fs4
beam3y   pdev-106    3       1       1   gxb     fs4

The [pdev] section specifies the SPs to be used for the observation.  This example gives 
names to the eight SPs on four spectrometer boxes. The first column is a symbolic name for the 
SP.  The second column is the host name of the spectrometer box containing the SP.  The next 
two columns group the SPs into beams and sub-bands.  As far as pnet is concerned, these 
groupings are arbitrary and intended to be used in post processing to group signals together. In 
this example there are four beams (0-3) with two sub-bands (0-1) for each beam.  

This is close to ALFA where there are seven beams and two sub-bands for each beam.  This 
format would allow specifying something like a single beam with many sub-bands for a single-
pixel wide-band receiver (provided that the mixers in the analog IF path can support such an 
arrangement.)

The fifth column is the physical FPGA number containing the SP.  PDEV has two FPGAs in each 
box numbered 0 and 1 corresponding to GXA and GXB respectively.  The sixth column is the 
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name of the setup section to be used for configuring the SP registers.  In this case there will be 
two different setup sections, GXA for sub-band 0 and GXB for sub-band 1.  The last column is the 
name of the fileserver that prun will connect for dumping.

# The signal processor ID and version number expected in the
# FPGAs
#
[sp 01.03]

The [sp] section specifies the identification for the SP expected for the observation.  Each SP 
provides the Plinth code a 16-bit number.  The upper 8-bits are a unique number identifying the 
SP design, the lower 8-bits are the version number of the SP design.  In this case 01 is the ID for 
the default EALFA/PALFA SP1 signal processor, expecting version 03 of the this SP design. 
Before an observation is started, pnet verifies that all of the spectrometers have the correct FPGA 
code loaded and are running the same version of the operating software.

# These are registers defs for the signal processor.  A
# different sp will probably have different registers.
#
# The default signal processor has a lot of registers
#
# Full defaults for these registers in the sample files
# in /usr/local/pdev/etc
#
[defs]
ARSEL           0       # Input select
AISEL           1
BRSEL           2
BISEL           3
ARNEG           4       # negate input
AINEG           5
BRNEG           6
BINEG           7
LEN             12      # transform length 16-8192 
DIAG            13
PSHIFT          14
PFBBY           15
SHIFT           17
FCNT            19
DCNT            20
DSHIFT_S0       22
DSHIFT_S1       23
DSHIFT_S2       24
DSHIFT_S3       25

The [defs] section defines the register names and addresses for the SP.  Each SP design will 
have a different [defs] section naming the various registers.  This example is small portion of the 
SP1 register set.  The Plinth code addresses  64k 16-bit registers.  Each line in the [defs] 
section contains the name of the register and the address in the Plinth address space.  In this 
case, the register ARSEL is a register that selects the source for the real portion of the A-polarity 
input to the SP1 signal processor.

# Header for dump file
#
[header]
FMTWID          # 0=8-bit components, 1=16-bit, 2=32-bit
FMTTYPE         # 0=power, 1=A/B power, 2=full stokes
LEN             # transform length
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DUMPSTART       # First bin # dumped
DUMPSTOP        # Last bin # dumped
FCNT            # Number of transforms per integration
DCNT            # Number of transforms dropped per int
ARSEL
AISEL
BRSEL

The [header] section specifies fields to be added to the header of the PDEV dump file. Each of 
these parameters is a 16-bit value corresponding to the value written to an SP register.  The 
header of the PDEV file already contains a number of Plinth items like the ADC clock frequency, 
the beam/sub-band of the SP, etc.  This sections is for including information specific to the SP, like 
the LEN register that contains the transform length of the SP1 signal processor. The idea is that 
all SP1 dump files will have the same header, but other SP designs will have header values 
specific to the SP.

[dump]
name            x1234
filesize        1000000     # in 1kbyte blocks
byteswap        3           # 0-7
magic           0x2e83fb01  # Magic number for SP1 files
dma             65536       # DMA size from FPGA 
gpoe            0x8         # Enable output on GPIO pins
ppssel          0           # GP input for PPS, default is 0
ppsedge         1           # set to one to use posedge
ppsforce        1           # Force a fake PPS to start obs

    # In the default sp these are all 4-bit values that see 
        # the threshold for console error reporting of 

    # overflow/saturation detection at 
    # various points in the datapath.  In general, these are
    # 8 32-bit values that can be used to mask error reporting
    # in any signal processor design.
    # 
err0_thresh     0           # ovf_adc overflow 
err1_thresh     0           # ovf_pfb overflow 
err2_thresh     16          # ovf_vshift saturation 
err3_thresh     16          # ovf_acc_s2s3 saturation 
err4_thresh     16          # ovf_acc_s0s1 saturation 
err5_thresh     16          # ovf_ashift_s2s3 saturation 
err6_thresh     16          # ovf_ashift_s0s1 saturation 
err7_thresh     0           # not used 

    # These are stated valued that are passed through to the 
    # pdev file.  pnet assumes they are correct.  The pdev
    # boxes also calculate an estimated ADC clock, but it is
    # only accurate to about 0.1%.  This value, if provided
    # is treated as the actual stated ADC clock frequency.
    $
lo1mix    1625.0
lo2mixlow       174.0
lo2mixhigh      310.0
adcclk          170.0

The [dump] section is used for several miscellaneous items related to starting an observation. 
The name item sets the primary name used for the dump files.  This name also appears in the 
LCD of the spectrometer during observations.  The dump filename is composed of the name 
parameter, the start date of the the observation, the symbolic name for the SP in the [pdev] 
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section, and a sequence number.  Filenames for a test observation done at the time of this writing:

(a)   (b)      (c)    (d)   (e)
x1234.20070109.beam0x.00000.pdev
x1234.20070109.beam0x.00001.pdev
...
x1234.20070109.beam0y.00000.pdev
x1234.20070109.beam0y.00001.pdev
...
x1234.20070109.beam1x.00000.pdev
x1234.20070109.beam1x.00001.pdev
...
x1234.20070109.beam1y.00000.pdev
x1234.20070109.beam1y.00001.pdev
...

(a) Name from the [dump] section
(b) Date observation started in YYYYMMDD
(c) SP identifier from [pdev] section
(d) File sequence number
(e) All files have a .pdev extension

Filesize sets the maximum size for each sequence of the dump file in 1k byte blocks.  Setting to 
zero puts the observation in a single file.

The plinth code that handles DMA can be programmed to do byteswapping in a flexible way. The 
byteswap parameter controls this function.  The LSB of the parameter does single byte swapping. 
The next bit swaps 16-bit shorts, the next bit swaps 32-bit words.  Depending on the type of 
components being dumped by SP1, the byteswapping parameter needs to be set to particular 
values to accommodate the differences between powerPC byte ordering (big endian) and the X86 
byte ordering on the file servers (little endian).

Magic sets a 32-bit magic number in the pdev dump file.  This is used to distinguish an SP1 dump 
file from some a dump file for some other type of SP.

dma sets the size of individual DMAs from the FPGA to the hardware.  Change this value at your 
peril.

gpoe turns on the output drive for the GP SMA connectors on the back of the box.  Normally the 
connectors are TTL level inputs, setting the corresponding bit to 1 make the connector an output. 
For this to be useful, the SP must produce some interesting signal to drive out of the box.  In the 
case of SP1, a GP pin set as an output is used for a synchronized winking cal output signal.

ppssel and ppsedge set the GP input and the edge of the signal to use for PPS synchronization 
of the beginning of the observation.  ppsforce is used to cause a fake PPS signal to start an 
unsynchronized observation if no PPS signal is present.

err0_thresh through err7_thresh are used for setting thresholds for masking error reporting to 
the console during an observation.  The parameters can be used in a user defined way for any SP 
design.  The assignments for the default SP are shown in the example above.  

[setup gxa]

# First thing in SP setup puts FPGA in diagnostic mode
DIAG            1
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# Input selector A and B complex signals
#   0..3  Selects ADC0 .. ADC3
#   4       Internal test signal selected for input
#   5       Sets component to zero
#
# A and B typically represent the A and B polarities of the 
# input signal. R and I typically represent the real (I) and 
# imaginary (Q) portions of the signal.
#
ARSEL           0
AISEL           1
BRSEL           2
BISEL           3

# This will load 32k 16-bit values for PFB filter coefficients
# The file pfb.4096.hamming is generated by the pnet_mkpfb_coeff
# script
#
PFB0            file pfb.4096.hamming

The [setup] section is the list of the register operations to setup an SP for an observation.  The 
operations are performed in the order specified.  The last value written to any register is used in 
the [header] section.  If the file parameter is used, values are read from a file and written to 
consecutive addresses on the SP. This is useful for writing things like filter coefficients in an SP.

Registers are written in the order specified in the [setup] section.  Registers can be overwritten or 
written multiple times.  For register values that are written in the header of the PDEV dump file, 
the last value written to the register is saved in the header.

pnet.conf conventions
The configuration file supports a recursive include directive to break the configuration into multiple 
pieces. Pnet first looks for the include file in the current directory, if it's not found in the current 
directory pnet looks for the file in /usr/local/pdev/etc.  By convention, a configuration file is 
broken up as follows:

# Sample pdev.conf file for testing
#
include "boxes.conf"
include "cal.conf"
include "sp1def.conf"

[dump]
name            x1234
filesize        1000000     # in 1-kbyte blocks
byteswap        3           # 0-7
magic           0x2e83fb01  # Magic number for SP1 files
dma             65536       # DMA size from FPGA 
gpoe            0x8         # Enable output on GPIO pins
ppssel          0           # GP input for PPS, default is 0
ppsedge         1           # set to one to use posedge of pps
ppsforce        1           # Force a fake PPS to start obs

[setup gxa]

# First thing in SP setup puts FPGA in diagnostic mode
DIAG            1
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# Input selector A and B complex signals
#   0..3  Selects ADC0 .. ADC3
#   4       Internal test signal selected for input
#   5       Sets component to zero
#
ARSEL           0
AISEL           1
BRSEL           2
BISEL           3
...

boxes.conf contains the [pdev] section, boxes.conf is kept in /usr/local/pdev/etc and is 
common to all configuration files for the spectrometer.  This way, if there is a change to the 
physical system configuration because of faulty hardware, the global boxes.conf file is modified 
and all of the configuration files will follow the change.

cal.conf contains calibration information for the ADCs.  This is typically setup as a system wide 
file to compensate for DC offsets and gain mismatches in the ADCs or analog electronics prior to 
the spectrometer.

sp1def.conf contains the [sp], [defs], and [header] sections.  This information is all specific 
to the SP design and should be provided by the SP designer. So, a typical configuration for an 
observation only needs to provide the proper [dump] and [setup] sections to setup parameters 
for the observation.

[cal] section
Plinth conditions the ADC inputs before sending the signal to the SP.  The ADCs have an intrinsic 
DC offset, this is usually less than 10 ADC units, but is sometimes sufficiently large to cause a 
large DC spike in long transforms.  The Plinth code can correct this offset before the signal is sent 
to the SP.  In rev.2 of the FPGA, the plinth code has a scaler after the offset to adjust for any 
difference in gain prior to the spectrometer.  The gain stage can adjust the gain of each ADC by a 
factor of [0..2) as a 1.15 fixed point number.  The scaling is specified as a floating point value in 
the [cal] section as follows:

[cal beam0x]
adc0_offset     1
adc1_offset     3
adc2_offset     5
adc3_offset     -9
adc0_scale    1.000
adc1_scale      0.987
adc2_scale      0.999
adc3_scale      1.234

[cal beam0y]
adc0_offset     9
adc1_offset     7
adc2_offset     -3
adc3_offset     -1
adc0_scale    1.000
adc1_scale      0.987
adc2_scale      0.999
adc3_scale      1.234

There is a [cal] section for each SP line in [pdev]  since each ADC will have its own individual 
characteristic.  It can be somewhat tedious to generate this information manually seeing as there 

JCM 10/2/7 10/38



are 56-ADCs in an ALFA system, so pnet can automatically generate the calibration information. 
The following pnet command will calculate the DC offsets based on an average of 8M samples 
from the ADCs:

% pnet --sigcal=cal.conf

The following command will generate cal.conf for all of the SPs in the configuration file. The 
ADCs seem to be pretty stable, so it's probably not necessary to generate a new calibration file 
very often.  Some care should be taken with the telescope while generating calibration data to 
insure that the noise baseline is suitable for calibration and not overly affected by a source or RFI.

Generating scaling information for the cal.conf file is a little trickier.  --sigcal does not generate 
scaling information by default. It might be desirable to automatically generate scaling information 
to level gains across all of the beam but there might be other mitigating factors that make 
generating scaling values problematic.  So, to automatically generate scaling values for the [cal] 
section use the following command:

% pnet --sigcal=cal.conf --scale

The above command will set the scaling of the ADC with the lowest RMS signal level to 1.000. 
Other ADCs will be scaled by a value less than or equal to 1.000 such that all beams have the 
same RMS signal level.  This may not be what you want...

Pnet can be used to test signal levels.  The following command will repeated report the mean and 
RMS signal levels (with the calibration registers applied).  This might be useful for testing signal 
levels prior to an observation.  The values are in ADC units and show the four ADCs associated 
with each SP:

% pnet --sigstat

# Mean signal level
#
# beam0x:    0.46    0.50   -0.41    0.27
# beam0y:   -0.23   -0.04   -0.22    0.07
# beam1x:    0.15   -0.05   -0.50   -0.20
# beam1y:   -0.23   -0.37   -0.03    0.05
#
# RMS signal level
#
# beam0x:    1.04    1.07    1.08    0.99
# beam0y:    0.98    0.93    0.99    0.95
# beam1x:    0.95    1.03    1.09    0.99
# beam1y:    0.99    1.02    1.00    0.98
...

Pnet is a little particular about the [cal] section.  If one SP has a [cal] section then all of the 
SPs must have a [cal] section.  This can create a small problem if new hardware is added to the 
system.  In this case, temporarily create an empty cal.conf file in the current directory until a new 
file can be created with pnet –sigcal=cal.conf. 

Pnet Operation
Pnet has a lot of options, it can run a variety of diagnostics on the spectrometers and has a 
number of utility functions for managing a group of spectrometers, but only the main operating 
mode is discuss here.  Run pnet with the -? option to see all of the options or refer to the 
technical section later in the document for more information.
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Once the configuration file is set, observations are relatively simple.  The –dump=n option to pnet 
says to start a synchronized observation across all of the SPs and dump n blocks from each SP:

% pnet --dump=1000
Connected to all
Connected to all psrv
First dump sequence number is 00000

118.84 integrations per second
Estimated dump time 8.4 s
Estimated total dump size 0.26 GB

Spectrometer box bandwidth estimates:
    pdev-105   15.58 MB/s
    pdev-111   15.58 MB/s

Fileserver bandwidth and dump size estimates:
    ao         31.16 MB/s, 0.26 GB

All spectrometers running...
0.00 MB/s 0.00 MB [0:0]/1000 blocks  (0.0%)
30.57 MB/s 15.60 MB [101:101]/1000 blocks  (10.1%)
29.84 MB/s 45.61 MB [219:219]/1000 blocks  (21.9%)
31.04 MB/s 77.99 MB [338:338]/1000 blocks  (33.8%)
31.09 MB/s 109.09 MB [457:457]/1000 blocks  (45.7%)
31.08 MB/s 140.25 MB [576:576]/1000 blocks  (57.6%)
31.11 MB/s 171.44 MB [669:695]/1000 blocks  (66.9%)
31.12 MB/s 202.54 MB [814:814]/1000 blocks  (81.4%)
31.12 MB/s 233.70 MB [932:932]/1000 blocks  (93.2%)
All spectrometers finished
%

When pnet starts up it will calculate a bandwidth estimate for each spectrometer box and a 
bandwidth estimate to each fileserver.  It is the observer's responsibility to insure that these 
bandwidths are reasonable.  The connections are gigabit ethernet that has a wire speed of about 
115MB/s.  The design goal is to support 50MB/s from each spectrometer box and 50MB/s to each 
fileserver.  In practice the system performs much better.  Long test observations have sustained 
bandwidths of more than 75MB/s per link.  If the bandwidth limit is exceeded, the failure will 
usually occur as a FIFO overflow, possibly in the FPGA hardware or in the powerPC device driver 
ring buffers.  Either way, a dump that fails because the non-realtime network and filesystems 
cannot keep up with the realtime requirements of the SPs will result in an error message for the 
first failure and pnet exiting with an error status code.  It is important to setup observation 
configurations that do not write to the fileservers too fast.
 
Pnet will try to create dump files starting with a sequence number of 00000.  If this file already 
exists, Pnet will look for the first available sequence number that is a multiple of 100.  Pnet will not 
normally overwrite existing files.  If you would like to overwrite possibly existing dump files, run 
pnet with the –force option.  In this case the dump files will always begin with sequence number 
00000.

You can use the –obs=foo option to pnet to add a special field to the filename.  In this case the 
dump files will have the following names:

x1234.20070109.foo.beam0x.00000.pdev
x1234.20070109.foo.beam0x.00001.pdev
...

In case of trouble you can run pnet with the -d option to turn on debugging messages.  Using the 

JCM 10/2/7 12/38



-d option twice will turn on a lot of debugging messages.

A observation can be aborted with a ^C.  This will result in files that have a dump header 
inconsistent with the length of the file, but otherwise self-consistent and usable.  Because of the 
many FIFOs and buffers in the system, the files for different SPs might be slightly different lengths 
after an aborted observation.

SP1 Programming
SP1 is the default SP (signal processor) for pdev.  This SP meets all of the requirements for 
PALFA and EALFA observations.  It has a lot of registers, but hopefully programming the 
spectrometer is not too complex.  The registers listed here are defined in 
/usr/local/pdev/etc/sp1defs.conf and should be included in any SP1 configuration file. 
Figure 2 show the datapath for SP1. This document is updated for rev.2 of the SP1 FPGA.  Rev.2 
includes a new complex mixer, a decimating low pass filter for high resolution frequency bins (HR 
mode), and a mechanism for time domain dumping of the output of the low pass filter.
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Input, decimation, and PFB
Data from four ADCs passes through a crossbar switch and is assigned to form two complex 
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signals for the two polarities of a single beam.  The ADC values can be independently negated or 
set to zero to adapt to different exponent conventions for complex signals in the analog mixers or 
to process real signals before the spectrometer.

The ADCs detect overflow if the analog signal is outside the limits of the converter.  The ADC 
overflows are counted and recorded as status information with each integration packet.

There is also an internal test signal generator for diagnostics that generates a linear or elliptically 
polarized complex CW signal plus noise.  This test signal is not used in normal operation, but is 
used for diagnostics and to verify simulation results against real hardware.

The next stage of processing (new to revision 2 of the FPGA) is a complex mixer.  The LO for the 
complex mixer is an internally generated digital LO.  There are two complex mixers, one for each 
polarization.  Each mixer receives the same frequency from the digital LO, but the phase 
difference between the LO for the two mixers can be adjusted arbitrarily. The section on HR mode 
describes the mixer in more detail. If the DLO frequency and phase are set to zero, the mixer is a 
precise numerical pass-through of the input signal.

Following the complex mixers is an optional decimating low pass filter.  The DLPF can be 
bypassed in normal operating modes.  Enabling the DLPF turns on HR mode, a high resolution 
mode for calculating very narrow frequency bins across a portion of the input signal.  The 
decimation of the low pass filter is variable to any integral value from 2x to 1024x.  The filter is an 
8x overlap filter.  The filter is symmetrical around DC, so only 4 coefficient tables are needed, 
these are mirrored around DC in hardware for the 8x overlap.  Filter coefficients are calculated 
with the script pnet_mkdlpf_coeff and are loaded as part of the pnet.conf file.  With loadable 
filter coefficients the width of the filter, the windowing function for the filter, and other filter 
parameters are left as software options to the user preparing the configuration file for the 
observation.  The output of the DLPF is sent to the PFB, but the output of the DLPF can be send 
to the packer for direct dumping of time domain information.  The bandwidth of ADC input time 
domain signals is too great for time domain dumping, but if the DLPF decimated enough to 
reduce the bandwidth to a manageable level, this time domain information can be dump directly. 
This might be useful for alternative applications like RADAR signal processing.  The DLPF is 
described in detail in the HR mode section.

The input to the PFB/FFT is four signed 12-bit signal components from either the DLPF or the 
complex mixers.  The PFB FIR filter processes the 12-bit data using a 16-bit coefficient table 
accumulating an 18-bit result.  The filter coefficients are chosen such that the peak gain of the FIR 
filter is less than one so there is no possibility of overflow in the FIR filter.  The FIR filter can be 
bypassed under software control making the PFB block only perform an FFT if desired.  The filter 
coefficients are loaded by the configuration process for the SP.

The FIR portion of the PFB is a 4x overlap filter that supports a maximum transform length of 
8192.  The filter length can be programmed by application software for a transform length of any 
power of two from 16 to 8192 points.  The filter coefficients for the FIR filter can be read and 
written by application software making it easy to use different filter characteristics without 
changing the FPGA.

The FFT can also be programmed by application software for any power of two transform length 
from 16 to 8192 points.  The FFT takes a shift mask that controls downshifting of the FFT on a 
stage by stage basis. If there is overflow in the FFT this is detected and recorded as status for the 
result packet. The FFT datapath is 18-bits throughout producing 18-bit results for the 
components.
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Stokes calculations
Stokes parameters are calculated according to the following (as told to me by Aaron Parsons):

I = AA* + BB* 
Q = AA* - BB*
U = AB* + BA*
V = j(AB* - BA*)

The hardware actually calculates and integrates four slightly different scalar values:

s0 = 2AA*   (unsigned value)
s1 = 2BB* (unsigned value)
s2 = 2Re(BA*)
s3 = 2Im(BA*)

An exercise for the reader to check my work and verify that:

I = ½ (s0 + s1)
Q = ½ (s0 – s1)
U = s2
V = s3

Calculating s0,s1,s2,s3 have a couple of advantages.  s0 and s1 are calculated as unsigned 
values (no sign bit).  This provides one extra bit of precision for I and Q.  For example, if dumping 
8-bits per component, s0 and s1 are 0..255 (really [0,1) ).  Calculating I Q from s0 and s1 gives 9 
real bits of precision for these parameters where you would only get 8-bits of precision if I and Q 
were dumped directly.  Keeping s0 and s1 independent makes overflow errors easier to analyze 
since s0 and s1 correspond to the power of the A and B polarities respectively.

Prior to the stokes calculation,, the PFB values are upshifted (with saturation) 0..7 bits.  Any 
saturation at this stage (vshift) is counted and stored as status with the accumulation. s0, s1, s2, 
s3 are calculated to 32-bits of precision and leave the stokes block at 32-bits.  

Accumulation
The accumulators integrate s0,s1,s2,s3 for a specified number of iterations and then dumps the 
result to the pack unit for formatting for the host computers.  Prior to the accumulators, the s-
parameters are downshifted 0..15 bits to provide sufficient headroom for the number of 
accumulation iterations.  The s0 and s1 accumulators are unsigned and saturate at their 
maximum values.  The s2 and s3 accumulators are signed and saturate at both the maximum and 
minimum integers.  All four accumulators are 40-bits.

Packing
The packer takes the four 40-bit stokes accumulations for each frequency bin and trims this down 
to the data required for the current observation.  The data trim is controlled by four different 
registers that operate independently in a reasonably flexible way. 
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The register FMTWID sets the number of bits to dump for each component, this can be 8-bits, 16-
bits, or 32-bits per component.  FMTTYPE sets the type of data to dump.  This can be only 
stokes-I (total power), s0/s1, or s0/s1/s2/s3 (full stokes). There are also two registers to control 
the range of frequency bins to dump.  A contiguous range of bins from DUMPSTRT to 
DUMPSTOP are dumped.

A 64-bit status word is sent with each dump, this word contains a 16-bit sequence number for the 
dump and 32-bits of overflow and saturation information for the datapath. The 64-bit status word 
at the end of an integration packet is formatted as follows:

[15:0] Packet sequence number, wraps at 65536
[31:16] Actual number of integrated transforms (0..65535)
[32] Cal input set at some point during integration
[35:33] 0
[39:36] ADC overflow count
[43:40] PFB overflow count
[47:44] VSHIFT saturation count
[51:48] ACC_S2S3 saturation count
[55:52] ACC_S0S1 saturation count
[59:56] ASHIFT_S2S3 saturation count
[63:60] ASHIFT_S0S1 saturation count

Bits [31:16] change function in HR_MODE with DLO_DWELL is setup to a non-zero value. In this 
special case, bits [31:16] contain the value of the DLO during the integration period.  This is a 
special case for a operation mode that sweeps the DLO.

When an observation is started, operation will begin at the first rising edge of PPS after the 
command is received.  The first dump will have a sequence number of zero and increment for 
each following dump.  Timekeeping on the dumps is done by keeping track of the sequence 
number and having precise knowledge of the time interval between dumps as an integral number 
of ADC clocks.  The precise number of ADC clocks per integration can be calculated using the 
following information.

The following table shows the number of bytes dumped for each frequency bin (bpb). The number 
of bytes dumped per integration (bpi) is as follows:

bpi = 8 + round-up-to-next-multiple-of-8 ( bpb *
         (DUMPSTOP – DUMPSTRT + 1))

The time interval between dumps (dti) is a function of the clock period, transform length and 
integration parameters as follows:

period = 1 / 170MHz = ~5.882ns
dti = period * LEN * ( FCNT + DCNT )

In HR mode, dti impacted by the decimation of the lowpass filter (DEC) as follows. See the section 
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Bytes dumped per frequency bin (bpb)
Components Bits per component

8 16 32
I 1 2 4
s0, s1 2 4 8
s0, s1, s2, s3 4 8 16



on HR mode programming for more details:

period = 1 / 170MHz = ~5.882ns
dti = period * LEN * DEC * ( FCNT + DCNT )

LEN is the length of the transform, this can be any power of two from 16 to 8192. FCNT is the 
number of transforms to integrate, DCNT is the number of transforms to drop between 
integrations.  DCNT is normally zero and 100% of the input signal is integrated.  The exception is 
when bpb is 16, in this case DCNT needs to be set to one and one transform is discarded per 
accumulation.

It follows that the total dump datarate (tdd) for each signal processor is:

tdd = bpi / dti

The dump parameters should be used to limit the dump datarate to the maximum that can be 
sustained by the filesystem of the host computers. Remember there are two signal processors in 
each box each independently processing a 170MHz sub-band. Here is an example plot from 
simulation dumping 8-bits of the stokes-I parameter across a range of bins for a simulated swept 
CW signal.

Overflow/Saturation
Overflow and saturation are measured at five points in the signal path.  At some of these points 
overflow is measured for multiple parameters, a total of 7 overflow/saturations are measured.  For 
each measurement, a count of the number of overflow/saturations is maintained.  This count is 
distilled into a 4-bit number stored in the status word for the accumulation that provides a general 
indication of the number of errors. The following 7 4-bit parameters are stored in the status word:
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ovf_adc
Overflows in the ADCs of A and B polarity inputs.

ovf_pfb
Overflows in the PFB

ovf_vshift
Saturations in the upshift after the PFB

ovf_acc_s0s1
ovf_acc_s2s3

Saturations in the s0s1 or s2s3 accumulator

ovf_ashift_s0s1
ovf_ashift_s2s3

Saturations in the upshift just prior to data packing.

For each measurement, 4-bits are kept that give an indication of the number of overflows that 
occurred during the integration period as follows.  This convention is used for all of the 4-bit 
overflow/saturation fields in the dump header.

0 0 errors
1 1 error
2 2-3 errors
3 4-7 errors
4 8-15 errors
5 16-31 errors
6 32-63 errors
7 64-127 errors
8 128-255 errors
9 256-511 errors
10 512-1023 errors
11 1024-2047 errors
12 2048-4095 errors
13 >= 4096 errors

Overflows are imprecise.  Due to pipelining in the signal path, errors might be recorded for a 
packet, but the actual packet screwed up by the overflows might be the following packet.  The 
overflows provide a general indication that something is wrong at a certain stage of processor and 
should not be used for fine grain signal filtering.

During an observation, the server checks the error terms and reports errors back to the pnet 
program. Sometimes it's not desirable to see all of the error messages.  The err_thresh 
parameter in the [dump] section can be used to set the threshold for each error parameter before 
messages are reported to the console.

SP1 register details
The following sections detail all of the registers in the SP1 signal processor. Next to each register 
is a field definition that is common for hardware-types, but is evidently mysterious to astronomy 
types. The notation [x:y] refers to a bit field that begins with LSB bit 'y' and ends with MSB bit 'x'. In 
this design, all registers are right justified (the LSB for the field is always at bit 0), so bit fields are 
noted here as [x:0] which means an x+1 wide register where the LSB is stored in bit-0. A field 
described as [2:0] can contain values from 0 to 7.
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ADC
ARSEL [2:0]
AISEL [2:0]
BRSEL [2:0]
BISEL [2:0]

Select the source for each component of the signal processing path.  AR 
corresponds to the real portion of polarization A, AI is the imaginary part of 
polarization A, etc.  Cross bar selection allows versatile physical wiring and the 
ability to bypass an errant polarity in the ALFA receiver. The encodings are:

0 ADC0
1 ADC1
2 ADC2
3 ADC3
4 test signal
5 zero

ARNEG [0]
AINEG [0]
BRNEG [0]
BINEG [0]

Control bit to negate (2's complement) each signal component.  This can be 
used to correct for ADC format or change exponent convention for complex 
signals.

Test signal
The test signal block generates a complex polarized  CW signal plus noise.  This is used in place 
of the ADC inputs if selected by the ADC selection registers.  These test signal registers are not 
used in normal operation, they are just for diagnostic and test purposes.

TS_FREQ_H [15:0]
TS_FREQ_L [15:0]

32-bit phase increment for NCO.  32-bit unsigned number added to phase 
accumulator each cycle.  Phase increment is 12.20 fixed point number from 0 to 
2pi.  FREQ_H must be written first, FREQ_L written second, phase change 
causes no discontinuity so software can generate a swept CW signal by rapidly 
changing these registers.

TS_PHASE [15:0]
12.4 signed fixed point number phase offset from polarity A to polarity B for test 
signal.  Value represents [-pi..pi) phase difference for simulating elliptically 
polarized signal.

TS_CW_A [15:0]
TS_CW_B [15:0]

Levels for CW signal for pol A and pol B.  Value is a 0.15 unsigned number [0..1) 
used to set level.  Set differently to simulate linearly polarized signal.

TS_NOISE_A [15:0]
TS_NOISE_B [15:0]

Levels for complex noise source to pol A and pol B.  Value is a 0.15 unsigned 
fixed point number [0..1) for setting level.  Noise generator is a poor quality 
LFSR feedback with weird looking spectral characteristics, but it's cheap and 
okay for hardware diagnostics.
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CMIX
DLO [10:0]

The frequency of the digital local oscillator (DLO) for the complex mixer. This is 
an 11-bit signed number.  A value of 0 is a frequency of 0 and no mixing is done. 
A value of 0x3ff corresponds to a mix frequency of Fs*1023/2048 (or almost 
Fs/2). A value of 0x400 corresponds to a mix frequency of -Fs/2.  The mix 
frequency is the frequency in the input signal that is shifted to DC.  The rest of 
the input signal is rotated the same amount around the unit circle.

DLO_PHASE [10:0]
The phase difference between the DLO sent to the complex mixer for the two 
pols. This is an 11-bit signed value, using the same convention for frequency as 
DLO. The phase of the B polarity is adjusted by this value.  A value of 0 is no 
phase shift between the two pols.  This value can be used to adjust the phase 
angle between the two polarities to correct for some phase error in the system 
prior to the spectrometer.  This correction can be used  even when DLO is set to 
zero.  A complex mixer multiplies the input signal by a sequence of complex 
values around the unit circle.  If DLO is set to zero, the A polarity is always 
multiplied by the unity constant (1,0) and the B polarity is multiplied by a 
constant value corresponding to the phase angle set by DLO_PHASE.  This 
allow a phase rotation of the B polarity.  This is really useful for simulating an 
arbitrarily phase difference between polarities for testing when one can't be 
found naturally.

DLO_DWELL [10:0]
This register is used for sweeping the DLO in a controlled manner during an 
observation.  This register is only used in HR_MODE when DLO_INC is set to a 
non-zero value.  This register sets the number integrations periods where the 
DLO should be held at a constant value.  After DLO_DWELL integrations the 
DLO incremented.

DLO_INC [10:0]
When this register is set to a non-zero value and HR_MODE is enabled, the 
DLO is swept and a portion of per integration status word is changed.  Every 
DLO_DWELL integrations, the DLO is incremented by DLO_INC.

In this mode, the status word for the integration contains the value of the DLO so 
post processing software knows the value of the DLO for each integration 
period.

DLPF
HR_MODE [0]

Single bit that enabled HR mode.  In HR mode the input of the PFB comes from 
the output of the DLPF.  When HR_MODE is set to zero (default), the input of the 
PFB comes from the complex mixer. The other DLPF registers are ignored 
unless HR_MODE is set to 1.

HR_DEC [9:0]
Variable decimation of the DLPF.  Legal values are 2-1024. The datarate (and 
bandwidth) of the input signal is reduced by this integer value. The filter 
coefficients loaded into the DLPF must correspond to this decimation or bad 
things will happen. The polyphase filter runs at this decimated rate.

HR_SHIFT [4:0]
The output of the LPF is upshifted by the number of bits specified. The input 
signal is 12-bits, this is multiplied by 16-bit coefficients to produce 16-bit 
intermediate values in the filter.  The final accumulation in the filter is 26-bits, 10 
extra bits are retained for the maximum decimation of 1024x without overflow. 
The upper 12-bits of the accumulation are kept for the output of the LPF.  This 
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26-bit accumulation is upshifted by HR_SHIFT bits. Roughly speaking, 
HR_SHIFT should be set to 10-log2(HR_DEC) to accommodate the decimation 
gain of the DLPF.  The shift range is expanded to 5-bits in version-4 of the SP1 
design.

HR_OFFSET [15:0]
After the upshift the result is offset by  HR_OFFSET and truncated to 12-bits for 
the PFB.  This offset is a 1.15 signed fixed point number. By properly setting 
HR_OFFSET,  a DC offset in the DLPF output can be corrected.  Suggested 
values for HR_OFFSET to facilitate rounding and removed DC offset during time 
domain dumping:

4-bit 0x0800
8-bit 0x0080
12-bit 0x0008

HR_LPF [2:0]
Normally this register is zero.  Setting to a non-zero value enables time domain 
dumping of the output of the DLPF in one of 6 modes.  Complex numbers are 
dumped for each component, in 4-bit mode a 4-bit real value and 4-bit complex 
value are dumped.  The register can be programmed to dump just the A polarity 
or both the A & B polarities, data can be dumped with 4, 8, or 16-bits per 
component.  In 16-bit mode, only 12-bits are actually dumped and the 16-bits is 
padded with zeros.  

datarate
0 Normal HR mode
1 Pol-A 4-bits per sample fs/dec
2 Pol-A 8-bits per sample fs*2/dec
3 Pol-A 16-bits per sample fs*4/dec
4 not used
5 Pol-A&B 4-bits per sample fs*2/dec
6 Pol-A&B 8-bits per sample fs*4/dec
7 Pol-A&B 16-bits per sample fs*8/dec

Setting HR_LPF to a non-zero value puts SP1 in a special mode that bypasses 
the polyphase filter, stokes calculations and the data packer for frequency 
domain data.  In time domain dumping mode, SP1 just dumps time domain 
samples, there are no sequence numbers, error checking, or block structure to 
the dumped data.  Data is just a stream of time domain samples.

It is important to set the byteswap parameter in the [dump] section correctly 
for the time domain dump mode.  When 16-bit data is being dumped (modes 3 
and 7),  byteswap should be set to 1.  In the other modes byteswap should be 
set to 0.

LPF_C0 [15:0]    
LPF_C1 [15:0]
LPF_C2 [15:0]
LPF_C3 [15:0]

These are the base addresses of four 1024 register areas for filter coefficients of 
the DLPF.  The filter is has an 8x overlap, but the filter is always symmetrical, so 
there are only 4 filter coefficient memories that are mirrored about DC in 
hardware.  The coefficients for the DLPF are generated with the scripts 
pnet_mkdlpf_coeff.

Main
These are the main operating parameter for the signal path.  In general, the datapath is put into 
diagnostic mode by written DIAG, other registers are written to setup operating parameters, and 
DIAG is written back to zero as the last step of setting up SP1.
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DIAG [0]
Put datapath in or out of diagnostic mode so other operating parameters can be 
altered.

LEN [13:0]
Length of transform.  Must be a power of two from 16 to 8192.

PFBBY [0]
Bypass FIR filter in PFB using only an FFT transform when set. PFB coefficient 
tables are ignored.

PSHIFT [12:0]
Downshift mask for each stage in FFT.  Bit [0] is the last stage of the FFT 
(butterfly size 2), Bit [12] is the first stage of the FFT (butterfly size 4096) of the 
FFT. If the transform length is less than 8192, unused bits are ignored.  At each 
stage in the FFT, the result is optionally downshifted 1-bit with rounding. 
Controlling downshift at each stage lets user find optimal balance between 
dynamic range, quantization error and overflow.

SHIFT [2:0]
After the FFT, the result is upshifted with saturation 0..7 bits.

FIR coefficients
PFB0 [15:0]
PFB1 [15:0]
PFB2 [15:0]
PFB3 [15:0]

Each of these is the base address for 8K 16-bit values for the FIR coefficients to 
the PFB.  The values are signed 1.15 fixed point numbers [-1..1). Programming 
these values is a little tricky.  A perl program pnet_mkpfb_coeff does the dirty 
work of creating values for these tables for different transform lengths. This 
program is described later in this document.

Accumulation
The accumulators take the result of the transforms and integrate each frequency bin of the 
transform.

DSHIFT_S0 [3:0]
DSHIFT_S1 [3:0]
DSHIFT_S2 [3:0]
DSHIFT_S3 [3:0]

Prior to integration, the individual Stokes precursor values are downshifted 0..15 
bits.  This downshift is to leave enough room in the upper bits to avoid overflow 
for the specified number of accumulations. For example, if the signal is to be 
integrated for 16 transforms, DSHIFT might be conservatively set to 4, 
downshifting 4-bits to avoid any overflow (actually saturation) during 
accumulation.

FCNT [15:0]
This is the number of signal integrations to perform for each accumulation.  The 
minimum value is 4, the maximum is 65536.

DCNT [3:0]
This is the number of transforms to drop between integrations.  This is normally 
set to 0 with no lost transforms and 100% of the input signal is integrated.  The 
exception is when all four stokes parameters are dumped and 32-bits of 
accumulation is dumped for each stokes parameter.  In this case, a hardware 
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restriction requires that this be set to 1 with 1 lost frame every integration.

SCNT [3:0]
The number of transforms to drop after synchronization at the beginning of data 
collection.  This insures that signal integration begins with signal present at the 
PPS signal.  The is primarily a hardware constraint.  For FFT transforms this 
register can be set to 2, for PFB transforms this register should be set to 5.  It is 
safe to always leave this register as 5. This insures that the pipelines are flushed 
after a PPS starts the observation and no pre-PPS signal is used in the first 
integration.

Pack
After each accumulation, data is dumped from the accumulator and packed according to these 
registers for use by the host system.

ASHIFT_S0 [2:0]
ASHIFT_S1 [2:0]
ASHIFT_S2 [2:0]
ASHIFT_S3 [2:0]
ASHIFT_SI [2:0]

The output of the accumulators is upshift with saturation 0..7 bits.  The four 
stokes precursors are upshifted independently.  The stokes I-parameter is 
calculated and shifted independently when only stokes-I dumping is used. 
S0,S1, and SI are unsigned values.  S2 and S3 are signed values in the shift 
and appropriate saturation is applied to each type.

FMTWID [1:0]
The width of data to dump for each parameter. The encodings are:

0 8-bit values
1 16-bit values
2 32-bit values

The powerPC processor has big-endian byte ordering.  The X86 server 
machines have little-endian byte ordering.  The plinth code can byte swap the 
data from the SP so that it is stored with the correct byte order on the fileserver. 
The byteswap directive in [dump] must be set as follows:

FMTWID BYTESWAP
0 0
1 1
2 3

FMTTYPE [1:0]
The type of data to dump.  The encodings are:

0 Stokes-I (sum of power of pol-A and pol-B)
1 s0 and s1 (Stokes I&Q)
2 s0, s1, s2 and s3 (full stokes I, Q, U, V)

DUMPSTRT [12:0]
Frequency bins are numbered 0..len-1. Bin-0 is the most negative frequency, bin 
len-1 is the maximum positive frequency and the DC bin is len/2.  This 
parameter specifies the first bin to dump.  This allows saving bandwidth by 
trimming unused frequency bins.

DUMPSTOP [12:0]
The last frequency bin to dump.  If all bins are to be dumped, DUMPSTRT is set 
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to 0 and DUMPSTOP is set to len-1.

Blanking control
SP1 has two mechanisms to control signal blanking.  In both cases, the blanking hardware 
generates a signal to the PFB to cause blanking.  If the blank signal is asserted at any time during 
a transform, the entire transform is dropped and not accumulated.  SP1 keeps track of the 
number of transforms actually integrated each period, this is stored in the header with each 
integration.  If blanking is disabled the number of actual integrations is always FCNT, the number 
of intended integrations. With blanking enabled, the number of actual integrations can be less the 
specified, or even 0.  The two blanking mechanisms are independent and can be used 
simultaneously if desired.  One mechanism uses an external signal from a blanking generator, the 
other mechanism uses overflow information from the ADCs to generate a blanking signal.

BLANKSEL        [3:0]
Select the GP input on the spectrometer box to use for the external blanking 
input.  This GP connector should be programmed as an input with the gpoe 
parameter in [dump]. If BLANKSEL is 0xf (default), no external blanking 
is done.

BLANKPER        [15:0]
When an external blanking signal is selected with BLANKSEL, BLANKPER 
determines how the blanking signal is handled.  If BLANKPER is 0 (default), the 
external blanking signal is used directly to determine when blanking is active.  If 
BLANKPER is non-zero, BLANKPER is the number of ticks to blank the 
incoming signal after the rising edge of the external blanking signal.  The 
thinking is that AO has a radar blanking system that produces a rising edge prior 
to a periodic radar RFI source.  The duration of the pulse cannot be precisely 
controlled, so BLANKPER allows the duration of the radar blanking to be 
precisely controlled to balance between sufficient blanking and signal integration 
time.  A tick is 16 ADC clock periods (about 94ns at 170MHz).

OVFADC_THRESH   [15:0]
OVFADC_THRESH is used to support blanking based on ADC overflows. 
OVFADC_THRESH is the number of ADC overflows that must occur during a 
transform before blanking is asserted.  By default this is set to a large value 
(0xffff) so overflow blanking never occurs.

OVFADC_DWELL    [15:0]
OVFADC_DWELL is used with OVFADC_THRESH to set the duration of the 
blanking interval.  The duration is measured in ticks (16 ADC clocks)

Calibration Input
CALSEL          [3:0]

Selects the GP input to use for calibration input.  By default 0xf is selected 
which means that no input is selected for cal input. A single bit is recorded in the 
header for each integration.  If cal is asserted at any point during the integration 
then the cal bit is set in the header, otherwise the cal input is zero.

Calibration Output
SP1 can be programmed to generate a calibration control output signal. If this is used, it should 
be sent to the receiver from one of the spectrometers and looped back as an input to all of the 
spectrometers.  When SP1 generates a cal output it is synchronized to the polyphase filter. The 
cal output can be programmed so that the output transitions on any FFT boundary during the 
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integration period.

CALCTL          [1:0]
Bit-0 is a manual control for the cal output.  If it is set then the cal output is 
asserted. Bit-1 enables the winking cal output.  When the spectrometer is 
running the cal output winks according to CALON and CALOFF. One of the GP 
connections needs to be enabled for output with the gpoe directive in the 
[dump] section to drive the signal out of the spectrometer box.  The cal output 
actually comes from GXA, but there is no harm in programming both GXA and 
GXB to generate cal.

CALON           [15:0]
Number of integrations for cal to be asserted.

CALOFF          [15:0]
Number of integrations for cal to be deasserted.

CALPHASE [15:0]
Sets the position during the integration when the cal output transitions.  If set to 
0, the cal output will switch at the beginning of the integration.  Due to pipelining 
delays, the actual output signal of the spectrometer will transition about 40ns 
after the integration begins.  CALPHASE can be as large as FCNT-1, in this case 
the cal output will transition as the last FFT of the integration period begins. 
Normally, CALPHASE should be set to FCNT/2 so that the cal output transitions 
in the middle of the integration period.

If CALPHASE is set to 0, CALON and CALOFF are set to 1, the cal output will 
switch at the beginning of every integration.  If this cal signal is externally looped 
back to the cal input of the spectrometer, the pdev dump file will show cal being 
active in every integration.  This is because the cal output signal transitions 
slight after the beginning of the integration and possibly even later counting 
cable delays from the cal output to the receivers and back to the cal input.  The 
cal input recording will record a 1 if the cal input is asserted any any time during 
the integration.  Regardless of the CALPHASE setting, if CALON is active for n 
integrations, the looped back cal input signal will show active for n+1 because of 
the misalignment between cal output and the actual integration.

HR mode programming
Rev.2 of the FPGA adds a new feature for integrating very narrow frequency bins in a high 
resolution mode.  The polyphase filter has a maximum length of 8192 points.  When HR mode is 
enabled, the DLPF is used to decimate the input rate by some integer ratio and the polyphase 
filter is run over a narrowband signal as shown in the following figure.  The DLPF is not used in 
non-HR modes.
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The first step in setting up HR mode is to program the complex mixer to select a center frequency 
for the spectrum.  This is controlled with the DLO register.  The mix frequency (the DC frequency 
for the polyphase filter) is DLO*Fs/2048.  DLO is an integer from -1024 to 1023.

HR mode is controlled in the pnet.conf file like other SP1 parameters. HR mode is enabled by 
setting HR_MODE to 1.  The decimation for the DLPF is set with HR_DEC. HR_DEC be set to any 
value from 2 to 1024.  The bandwidth of the input signal is reduced by a factor of HR_DEC.

HR_SHIFT  and HR_SCALE scale the out levels of the filter as described in the register section 
above.  The following example sets up for 20x decimation.  With a 170 MHz ADC clock, the PFB 
does a transform across 170/20 = 8.5 Mhz.  With an 8192-pt transform the bins are 1.03 kHz. The 
transform time in HR mode is reduced by the decimation rate. The transform time for this example 
is (20*8192)/170 = 963 us.

HR_MODE 1
HR_DEC 20   # 2..1024

The DLPF must be loaded with filter coefficients to match the decimation rate.  The filter has an 
8x overlap. The filter is symmetrical so only four coefficient tables are needed.  The filter 
coefficient registers are organized as follows:
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The filter coefficients are generated with the pnet_mkdlpf_coeff program as follows:

% pnet_mkdlpf_coeff --dec=20 --fn=filter --window=hamming
% ls -l
-rw-r--r-- 1 jeff users 100 2007-03-01 22:06 filter.0020.0
-rw-r--r-- 1 jeff users 100 2007-03-01 22:06 filter.0020.1
-rw-r--r-- 1 jeff users 100 2007-03-01 22:06 filter.0020.2
-rw-r--r-- 1 jeff users 100 2007-03-01 22:06 filter.0020.3
% cat filter.0020.3
7fdb
7eb8
7c76
791f
74c3
6f75
694c
6264
5ada
52ce
4a63
41b9
38f5
3037
27a2
1f53
1766
0ff5
0917
02dc

The filter coefficients are 1.15 signed fixed point numbers with a range of [-1..1), they are loaded 
in the pnet.conf file as follows:

LPF_C0   file filter.0020.0
LPF_C1     file filter.0020.1
LPF_C2    file filter.0020.2
LPF_C3    file filter.0020.3

Generating PFB FIR coeffcients
pnet_mkpfb_coeff generates coefficients for the PFB FIR filter. As part of the pnet installation, 
tables for a typical filter tables for various transform lengths are stored in /usr/local/pdev/etc 
as follows:
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pfb.16.hamming
pfb.32.hamming
pfb.64.hamming
pfb.128.hamming
pfb.256.hamming
pfb.512.hamming
pfb.1024.hamming
pfb.2048.hamming
pfb.4096.hamming
pfb.8192.hamming

These files should be suitable for most applications, but if you are picky (and you know who you 
are), you can generate custom coefficient tables using pnet_mkpfb_coeff or modify this script to 
generate optimized filter coefficients.

...  add drawing of filter ...

-- add instructions for running pnet_mkpfb_coeff ...

Pdev dump file format
Pdev creates dumps files in the same format regardless of the SP being used.  The file format is 
simple.  A 1024-byte header is followed by the data as it is dumped from the SPs. The first eight 
32-bit words of the dump are as follows:

0xdeadbeef Pdev magic number
magic from [dump] section of pnet.conf
adcf ADC clock freq in Hz (+/- 0.01%)
byteswap from [dump] section
blksiz     size of each block (integration)
n number of blocks dumped
beam from [pdev] section
subband from [pdev] section

In version 2 of the pdev dump file, the initial header is increased from 8 32-words to 32 32-bit 
words.  The first 8 words are the same as the version 1 header except the magic number is 
changed to indicated a version 2 file.  The initial 32 32-bits are as follows in a version 2 file:

0xfeffbeef Pdev magic number
magic from [dump] section of pnet.conf
adcf ADC clock freq in Hz (+/- 0.01%)
byteswap from [dump] section
blksiz     size of each block (integration)
n number of blocks dumped
beam from [pdev] section
subband from [pdev] section
lo1mix from [dump]
lo2mixlow from [dump]
lo2mixhigh from [dump]
adcclk from [dump]
time Start time in UTC seconds
resv1 set to 0, reserved for Phil
resv2 set to 0, reserved for Phil
if1 from [dump]
# remaining 16 values are currently undefined

The remainder of the 1024-byte header contains 16-bit values corresponding to the [header] 
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section of the configuration file.  This is the SP specific header information.  The maximum file 
size is specified in the [dump] section.  A new file with an incrementing sequence number is 
opened when the maximum file size is reached.  The offset to these SP header values is different 
between version-1 and version-2 pdev files.  In version-1 files, the user header offset is 32-bytes 
from the beginning of the file.  In version-2 files, the user header offset is 128-bytes from the 
beginning of the file.

pview
Pview is an engineering diagnostic program for viewing the output of the spectrometer in real-
time. Pview acts as a replacement for psrv, the server-side program that stores the output of the 
spectrometer.  Instead of storing the output of the spectrometer to a file it does a real-time display.

pview should be run on a computer with a high performance graphics display and a gigabit 
network connection to the spectrometers under test.  Pview replaces psrv, so it sees the same 
network bandwidth as a server machine.  Pview can be run as a networked X11 application with 
good results, but best results with a local graphics display.

Pview is a multi-threaded application.  One thread reads the spectrometer data over the network 
connection and processes the data for display.  Another thread updates the display with an 
animated display of the spectral data.  Both of these threads can consume quite a lot of CPU 
resources, so pview will likely benefit from being run on a multi-processor machine.

Pview should be started by the user from the command line.  The program is still a bit rough and 
some diagnostic messages will appear on the terminal where the application is started. Start 
pview from the command prompt and you should get a boring looking window something like this:

Pview works by listening for a network connection from a spectrometer.  The status bar should 
show that pview is listening for a connection on port 10000 of the local machine.  pview will try 
port 10000 first and and try higher numbered ports until it finds an unused port.  If pview is aborted 
unexpectedly the operating system may keep the listening port active for a few minutes, if pview if 
re-launched it will use a higher numbered port like 10001.  Note this port number.

To use pview, the pnet.conf file for an observation needs to be modified slightly.  The first 
change is that the [pdev] section needs to be modified to point to pview as the file server 
machine for the observation.  The [pdev] section is normally in the file boxes.conf.  You can 
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create a local boxes.conf file or not include boxes.conf in your pnet.conf file and add the 
[pdev] section directly. The modified [pdev] section should look something like this:

[pdev] 
# name  IP address  Beam    Subband sp  setup   file server 
# 
b0sp0   pdev-101    0       0       0   gxa     laptop:10000 

The change is to specify the file server as machine:port where port is the port number pview is 
listening on.

From a new terminal window, use pnet to start the observation as normal.  Pnet will connect to the 
spectrometer and the spectrometer will connect the the file server which is really the pview 
application running on a workstation.  Spectra are dumped as normally, but are now displayed in 
the application.  Once pnet is started you should see an animated display like this:

The horizontal and vertical zoom buttons and scroll bars can be used to zoom in on interesting 
parts of the signal.  The check boxes on the left side enable signals for display.  The tooltips 
should provide some information if you hold the mouse over the buttons.  In this case I changed 
the default Y scaling to 1e0 and zoomed and scrolled a bit on the Y-axis to get a nice animated 
image.  The Status window is displayed (using the light bulb button on the toolbar) to show
additional technical information and the last location of the cursor in the display window.

The radio buttons on the left side scale the Y axis.  With 32-bit dumps in particular, the signal can 
have a wide dynamic range that is difficult to control with the vertical zoom buttons.  By setting the 
scaling with the radio button it is easier to display the interesting portion of the signal.

There is a status window that can be display with a button on the toolbar.  When the status 
window is display, clicking the mouse in the display window will show detailed frequency and level 
information for the signal.

A few notes about performance using pview.  For best results, the spectrometer should be 
configured to output at least a few integrations per second.  Some aspects of the user interface 
are updated at the integration rate and the application can feel sluggish if the spectrometer 
outputs data too slowly.  The spectrometer should be programmed to output data probably no 
faster than about 100 integrations per second.  The workstation might not be able to keep up with 
drawing data at faster frame rates.  It is probably desirable to use a CPU/network monitor on the 
workstation to keep track of CPU and network usage.  These can change dramatically depending 
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on the number of signals being displayed and the size of the windows.  Pview will attempt to drop 
integration frames gracefully if the internal FIFOs start to fill, but your mileage may vary if system 
resources are exceeded.  Another good indicator about performance problems is the number of 
integrations in the status window.  The networking code maintains a FIFO of about 50MB of data 
from the spectrometer.  When the FIFO is more than half full, pview will start dropping integration 
packets to try and keep the FIFO less than half full.  If this starts happening, the status window will 
start showing the number of packets actually integrated along with the number of packets 
dropped.  This is an indicator that the workstation doesn't have enough processing power to keep 
up with the spectrometer.  A typical solution is to increase the integration time in the spectrometer 
to slow the datarate to pview. Clearing the integration buffer (the broom icon in the toolbar) will set 
all of these counters back to zero.  As a reference point, using my circa 2005 dual-core laptop 
(two 1.667GHz cores) with gigabit ethernet, I find that I can keep up with dump rates of about 25 
MB/s from the spectrometer. A faster machine can probably do quite a bit better and likely keep up 
with the maximum specified 50MB/s dump rate of the spectrometer.

During normal operation with no dropped integrations, the network buffer will stay nearly empty. 
The FIFO depth can be monitored by running pnet with the -d option.  The FS-buf column is the 
size of the network fifo on pview.  When performance is close to the edge and packets are being 
dropped, the FIFO will linger near half full (25MB).  The causes some delay in the user interface. 
If the dump rate is 25MB/s, the display will lag the realtime signal by about 1s, so a change of 
input signal is delay by about 1s in the display.  In normal operation with no dropped packets the 
delay is not noticable.

In the [dump] section of pnet.conf is a parameter called dma.  This is normally left at 65536. 
When using pview for interactive display it might be desirable to change this value.  The dma 
parameter sets the size of dma done by the powerPC processor in the spectrometer.  In normal 
operation a larger value makes the spectrometer run more efficiently.  With pview, it is desirable to 
make this value smaller.  For example, if the dump size of each spectrum is small, say 10k bytes 
and the integration rate is low, say 1 integration per second, the powerPC will process a full DMA 
buffer before sending data to pview.  This will cause a jerky display where the pview will sit idle for 
about 6-seconds and then quickly display the six integrations that fit intput a 64k DMA. By 
changing the DMA parameter from 65536 to 1024, the individual DMAs are smaller and pview 
operation is much smoother.

[dump]
dma 1024 # Normally 65536, 1024 for pview

Pview can do some basic baseline removal.  After integrating an off-source signal, push the down-
arrow button in the toolbar.  This stores the current signal as a baseline reference.  When the 
baseline check box on the left is checked, the baseline is removed from the current signal. After 
switching to baseline removal, the display may look quite strange.  Change the Y-axis scaling to 
1e-2 and the veritcal zoom buttons to see the signal with appropriate scaling.  The baseline 
removal is (a-b)/b.  The baseline is only valid for the current observation.  It pnet aborts or finishes 
normally and the observation is restarted, the baseline is lost and a new baseline needs to be 
stored.

Pview is designed to display the output of a single SP on a single spectrometer.  If you have 
sufficient computing resources, you can run multiple copies of pview at the same time.  Each copy 
of pview listens on a different port.  By setting up the pnet.conf file properly, two different SP's can 
be run at the same time and send to different pview windows.  Be really careful that you don't run 
out of network or CPU resources.

Pview can save the current spectrum as a text file from the menu with File->Save.  This will save 
the current integrated spectrum along with the baseline signal and bin number.  This should make 
is easy to important data from an engeering test into a spreadsheet or some other program for 
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further analysis.

Pview is intended to be pretty reliable.  You should be able to start pview and leave it running for a 
long time.  If there is no network connection from a spectrometer it consumes very little resources. 
If pnet/prun aborts unexpectedly, pview should recover gracefully and listen for a new connection. 
A typical session should consist of starting pview once and possibly trying many different 
observation parameters in the pnet.conf file, starting and aborting pnet many times to test different 
parameters.  Pview should be very stable in this situtation.

spcvt
spcvt is a server program for manipulating pdev dump files. It can do a few useful things to any 
pdev file, and a few cool things with SP1 specific pdev files.  It can serve as an example for writing 
custom programs to process pdev files.

Usage:  spcvt [options] file ...

   Operations on any pdev file
   [--info]        print info about file
   [--get=n]       get block n and write it to stdout
   [--cmp]         Compare two observations

   SP1 specific commands
      [--csv=n]       Dump n blocks in text format for spreadsheets

   [--plot=n]      Plot n blocks using gnuplot
   [--blk=n]       Starting block number for csv command

      [--avg=n]       Number of blocks to average for csv command
   [--norm]        Normalize values in CSV
   [--log]         Normalize and output values in log -dBc 
   [--start=n]     Starting bin for plot
   [--stop=n]      Last bin for plot

      [--check]       Check headers for seq numbers and overflows

   [--fits]        Convert PDEV file to FITS file
   [--maxrows=n]   Maximum number rows (blocks) in each FITS file
   [--hdr]         Print headers for each SP1 block

When spcvt opens a pdev file it verifies that the length of the file(s) matches the header and the 
file has correct magic numbers.

[--info] prints out interesting information about the file.  If spcvt has specific information about the 
SP type, it will interpret.  Sample output for an SP1 file:

[jeff@ao dump]$ spcvt --info x1234.20070111.b0a.00000.pdev
Info:
    Initial sequence    00000
    Base filename       x1234.20070111.b0a
    ADC freq            156.25 MHz
    Number of files     1
    Filesize            6555424
    Total size          6.56 MB
    Byteswap            3
    Number of blocks    100
    Block size          65544 bytes
    SP magic            0x2e83fb01
    Beam                0
    Subband             0
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    User header:
        0002 0002 1000 0000 0fff 0140 0001 0000
        0001 0002 0003 0000 0000 0000 0000 0000
        1555 0000 0002 0002 0002 0002 0002 0002
        0002 0002 0002 0005 2000 2423 0000 0010
        0008 0040 0040

SP1 Info:
    Transform length    4096
    Start bin           0
    Stop bin            4095
    Component width     2 (32-bit)
    Dump type           2 (full stokes)
    Frames integrated   320
    Frames dropped      1
    PFB bypass          0
    PSHIFT              0x1555
    SHIFT               0
    DSHIFT_S0           2
    DSHIFT_S1           2
    DSHIFT_S2           2
    DSHIFT_S3           2
    ASHIFT_S0           2
    ASHIFT_S1           2
    ASHIFT_S2           2
    ASHIFT_S3           2
    ASHIFT_SI           2

    Pol A input         (ADC0, ADC1)
    Pol B input         (ADC2, ADC3)
    Integration time    8.41 ms
    Bin width           38.15 kHz
    File time           0.84 s

[--cmp] compares pdev files that might are supposed to be identical aside from the header. [--
get=n] extracts a specified block from the file and writes it to standard out.

spcvt has a number of other options for processing SP1 specific files. The most useful is the [--
fits] option to convert a pdev file to a FITS file.  This is an example conversion intended to serve 
as an example for a more sophisticated FITS conversion suitable for science applications.

Creating a new SP
The SP is a signal processing datapath.  It takes input from the ADCs, processes it in someway, 
and produces output at a decimated datarate.  There is a simple interface to read/write 16-bit 
registers and a few control signals to start and stop observations.  The intention is that an 
engineer (or inspired astronomer) can create a new signal processor module, a corresponding 
pnet.conf configuration file, and do observations and data collection without writing any software 
or dealing with any system issues.  Proficiency with verilog is required to write a new SP.

Here is the top level verilog interface to an SP:

module sp (
    ck,
    reset,
    master,
    obs_start,
    obs_stop,
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    ctl_we,
    ctl_addr,
    ctl_data,
    ctl_rd_data,

    gp,
    gp_out,

    adc0_dat,
    adc0_ovl,
    adc1_dat,
    adc1_ovl,
    adc2_dat,
    adc2_ovl,
    adc3_dat,
    adc3_ovl,

    pack_dat,
    pack_vld,

    sp_id,

    extra_cc,
    extra_hdr
);

    // The ADC clock, nominally 170MHz, all signals
    // are synchronous to this clock.
    //
    input                       ck;

    // Reset for the signal processor, the powerpc can
    // assert this with a register write.  External reset
    // also causes this to be asserted.
    //
    input                       reset;

    // This is a DC signal connected to a strapping option on
    // the board.  One of the FPGAs is indicated as master and
    // the other slave.  This is used for selecting the FPGA
    // the does the sampling of the external GPIO pins.
    //
    input                       master;

    // Strobes to start and stop an observation.  SP should
    // begin processing signals when obs_start is asserted for
    // one cycle.  sp should stop dumping data a short time after
    // obs_stop is asserted for a cycle.  Typically obs_start
    // is asserted a deterministic time after PPS when the
    // hardware is armed in the plinth code.  For testing,
    // obs_start can be asserted manually in software, multiple
    // fpgas on the same board are synchronized on a manual
    // start.
    //
    // obs_stop is not necessarily synced across multiple
    // fpgas or boxes.
    //
    input                       obs_start;
    input                       obs_stop;
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    // Diagnostic bus interface.  Writes are mapped into the
    // powerpc interface.  A register write is a single cycle
    // pulse on ctl_wr with ctl_addr and ctl_data valid
    // during the cycle.
    //
    // Registers reads (if used) are a little goofy. The address
    // is written to ctl_addr (with no strobe to indicate this),
    // the signal processor places the read data on ctl_rd_data.
    // The powerpc reads an indirect register to collect the data.
    // The timing for reads is not critical since the address
    // and data phases of the read are separated by software on
    // the ppc.
    //
    input                       ctl_we;
    input   [15:0]              ctl_addr;
    input   [15:0]              ctl_data;
    output  [15:0]              ctl_rd_data;

    // These are the conditioned general purpose inputs to the
    // box.  These are used for pps, blanking, cal, etc. This
    // signals are already resampled to the ADC clock and
    // synchronized across the two FPGAs.
    //
    input   [`GP_IN-1:0]        gp;

    // This is the output signal for the GP pins.  The pins
    // are normally terminated inputs.  If a bit is set
    // in the pi register PREG_GPOE the pin becomes an output
    // and this signal drives it.  Only the FPGA with master
    // asserted can actually drive the GP outputs of the box.
    //
    output  [`GP_IN-1:0]        gp_out;

    // The four 12-bit ADC inputs and overflow for the ADCs.
    //
    input   [`N_ADC-1:0]        adc0_dat;
    input                       adc0_ovl;
    input   [`N_ADC-1:0]        adc1_dat;
    input                       adc1_ovl;
    input   [`N_ADC-1:0]        adc2_dat;
    input                       adc2_ovl;
    input   [`N_ADC-1:0]        adc3_dat;
    input                       adc3_ovl;

    // This is the primary output of the signal processor, a
    // 64-bit bus and a data valid flag on the same cycle
    // the databus is valid.
    //
    output  [63:0]              pack_dat;
    output                      pack_vld;

    // This is likely a constant value that indicates the
    // design and revision number.  By convention, the upper
    // 8-bits is the design and the lower 8-bits is the
    // revision number.  Software in the ppc can read this
    // to query the signal processor in the fpgas.
    //
    output  [15:0]              sp_id;
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    // These are directly connected to bonding pads for extra
    // signals.  extra_cc is connected to the other FPGA and
    // extra_hdr are connected to headers on the board
    // for debug or other crazy functions.
    //
    inout   [35:0]              extra_cc;
    inout   [35:0]              extra_hdr;
endmodule

The signal processor runs off a single clock, ck.  This clock is the ADC clock.  GX also runs off a 
second clock synchronous to the powerPC I/O bus, but this is hidden from the SP. Everything in 
SP runs off ck.  The clock signal has been conditioned, all inputs an outputs from the SP are 
registered to the clock signal.

The reset signal should set the SP to a known quiescent state.  The SP should not make any 
assumptions about FPGA initialization.  The reset signal is asserted by a system reset or by a 
plinth register write.  The SP should not generate any output after a reset until obs_start is 
asserted.

master is a DC signal connected to an external pullup/pulldown resistor.  The first GX chip, GXA, 
has a pullup resistor connected to this pin, all other FPGAs have a pull down resistor.  The master 
FPGA is used to synchronize external GP signals and distribute them to the other FPGAs.  For the 
most part, the SP does not need to know if it is running on the master FPGA.

obs_start and obs_stop are used to start and stop observations.  obs_start is asserted for a 
single clock cycle.  In normal operation, the clock pulse is synchronized to PPS and all FPGAs are 
synchronized to get obs_start on the same clock cycle. obs_stop is asserted for a single cycle 
to stop the observation.  obs_stop is not synchronized across the FPGAs.  The SP should stop 
generating output after obs_start is asserted, this requirement is a little soft, the SP should stop 
sending data within a new milliseconds.

The register interface with the ctl_* signals is quite simple. A register write is a single cycle 
operation.  ctl_we is asserted for a single cycle with ctl_addr and ctl_data valid.  The address 
should be the same value used in the [defs] section of the configuration file.  All registers are 16-
bits and there can be up to 65536 registers.  All of the configuration for the SP should be done 
through this register interface.  It is not necessary for all of the registers to be initialized by a reset, 
but enough state should be initialized to insure that he SP does not produce any output until 
obs_start is asserted.

The gp inputs can be used for any purpose needed by the SP like calibration, blanking, etc.

The gp_out signals can be driven with any output signal the SP needs to generate.  When the SP 
generates an output, the plinth code needs to be program the GP connector as an output with the 
gpoe parameter in the [dump] section.

The ADC signals are pretty self explanatory.  The ADC produces an overflow the SP can use if 
desired.

The SP should provide an 16-bit ID.  This is read by the plinth code and the pnet application 
software to insure the correct SP is loaded.  The SP also has access to extra signals with no 
defined function.  36-bits are connected to a header next to the FPGA, and 36-bits are connected 
to the other FPGA on the PDEV spectrometer.

The most important output signals are pack_dat[63:0] and pack_vld. This 64-bit bus is how 
processed data is sent from the SP to fileservers for storage. After an observation is started with 
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obs_start, the SP can send 64-bits of information on any given cycle by asserting pack_vld.

Plinth code manages byteswapping of the 64-bit data bus, there is no flow control. The 
assumption is that the SP is processing a real-time signal and flow control is not possible.  The 
plinth code provides a FIFO between the real-time data from the SP and the DMA controller 
moving data to main memory of the powerPC.  This FIFO is 2^20 64-bit words deep.  So, the SP 
can conceivably dump a 64-bit word every cycle for 2^20 cycles before possibly filling the FIFO, 
so it's possible for an SP to do relatively large data bursts.

Software on the powerPC and fileservers keep track of the plinth FIFO as well as other FIFOs 
implemented in software.  Plinth calculates parity on the 64-bit bus, stores parity with the data in 
the FIFO, and sends the data with parity over the I/O bus of the powerPC and the powerPC DMA 
controller checks parity when the data is stored in main memory.  Pnet insures that all of the data 
sent by the SP arrives at the fileserver reliably.  If a FIFO overflow or a parity error occurs, the 
errors are report to the user by pnet.

The powerPC IO bus has a maximum sustained bandwidth of about 110MB/s.  This bus is shared 
by two FPGAs.  The network connection from the spectrometer to the fileserver is gigabit 
ethernet, the maximum bandwidth of this connection is something less than 100MB/s.  The SP 
should insure that the two SPs in the spectrometer keep their average bandwidth below these 
limits.

Building an SP
To build an SP you need a source tree for the PDEV system.  To get the current source tree use 
subversion (svn) on a Linux machine:

% svn checkout https://www.mock.com/svn/pdev/trunk pdev

Read the subversion documentation to take advantage of the feature of the source code control 
system.
To use the simulation environment, get a copy of the GPL programs cver and gtkwave.  These 
programs are a verilog simulator and waveform viewer.

The GX design files are in pdev/gx.  The easiest way to start an SP design is to make a copy of 
SPEX, the small example SP, change the name of the project in Makefile.defs, and verify that you 
can build the SP:

% cp -r pdev/gx/spex pdev/gx/spnew
% vi pdev/gx/spnew/src/Makefile.defs 
% cd pdev/gx/spnew/build
% make

The example signal processor contains a simulation test bench and a few examples for 
programming the new SP and generating test signals.
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