Ethernet/RS232, 1- and 2-axis DMC-14x5 Series

Product Description

The DMC-1415 and DMC-1425 are economical, one and two axis motion controllers with an Ethernet 10Base-T and RS232 port. The DMC-34×5 is designed for Ethernet-based distributed systems where one DMC-34x5 controller is designated as the master over other DMC -34×5 controllers. Controllers are available as a card-level product or in a metal enclosure with power supply.

With a 32-bit microcomputer, the single and dual axis controllers provide such advanced features as PID compensation with velocity and acceleration feedforward, program memory with multitasking for simultaneously running two applications programs, and uncommitted I/O for synchronizing motion with external events. It handles various modes of motion including point-to-point positioning, jogging, contouring, electronic gearing and ECAM. The DMC-1415 or -3415 single-axis controller accepts inputs from two encoders, which is useful for electronic gearing applications. The DMC-1425 or -3425 dual-axis controller includes linear and circular interpolation for precise, coordinated motion.

Like all Galii controllers, the DMC -14×5 and -34×5 controllers use a simple, English-like command language which makes them very easy to program. Galil's WSDK servo design software further simplifies system set-up with "one-button" servo tuning and real-time display of position and velocity information. Communication drivers are available for Windows, NET, QNX, and Linux.

Features

- Card-level and box-level, stand-alone motion controllers
- DMC-1415 or DMC-3415: 1-axis card or box DMC-1425 or DMC-3425: 2-axis card or box
- Ethernet 10BASE-T and one RS232 port up to 19.2 kb .
- Ethernet supports multiple masters and slaves

The DMC-1425,-3425 controls two servos or two steppers

- Accepts up to 12 MHz encoder frequencies for servos. Outputs up to 3 MHz for steppers
- Advanced PID compensation with velocity and acceleration feedforward, offsets, notch filter and integration limits
\square Modes of motion include jogging, point-to-point positioning, contouring, electronic gearing and ECAM. Accepts input from auxiliary encoder for DMC-1415,-3415 only. Linear and circular interpolation for DMC-1425,-3425 only.
- Over 200 English-like commands directly executable by controller. Includes conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Concurrent execution of two application programs
- Home input and forward and reverse limits
- 2 uncommitted analog inputs with 12-bit ADC
- DMC-1415,-3415:7 Uncommitted digital inputs, 3 digital outputs
DMC-1425,-3425:3 Uncommitted digital inputs, 3 digital outputs
- High-speed position latch
- Use Galil's IOC-7007 or DB-14064 for additional I/0
- Uses 37-pin D connector. ICM-1460 interconnect module breaks-out 37-pin cable into screw terminals
- DMC-14×5,-34x5-Card accepts $+5 \mathrm{~V}, \pm 12 \mathrm{~V}$; DMC-14×5,-34x5-BOX accepts $90-260$ VAC
- Compact size:

DMG-14x5,-34x5-CARD: 3.75 " $\times 5.0^{\prime \prime}$
DMC-14×5,-34x5-BOX:5.1" $\times 3.0^{\prime \prime} \times 6.8^{\prime \prime}$

- Communication drivers for Windows, QNX, and Linux
- CE certified

Custom hardware and firmware options available

Ethernet/RS232, 1- and 2-axis

DMC-14x5 Series

Specifications

System Processor

\square Motorola 32-bit microcomputer
Communications Interface
Ethernet BASE-T and RS232 port up to 19.2k baud

Modes of Motion:

- Point-to-point positioning
\square Jogging
- Electronic Gearing
- Electronic Cam
- Contouring
- Linear and circular interpolation for DMC-1425,-3425

Memory

Program memory size- 500 lines $\times 80$ characters
126 variables
2000 array elements in up to 14 arrays
Filter
\square PID (proportional-integral-derivative) with velocity and acceleration feedforward
\square Notch filter
■ Dual-loop control for backlash compensation (DMC-1415,-3415 only)

- Velocity smoothing to minimize jerk
\square Integration limits
- Torque limits
- Offset adjustment

Option for piezo-ceramic motors

Kinematic Ranges

- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity:Up to 12 million counts/sec for servo motors

Acceleration:Up to 67 million counts/sec ${ }^{2}$

Uncommitted Digital I/0

\square DMC-1415/3415:7 buffered inputs; 3 TTL outputs*

- DMC-1425,-3425:3 buffered inputs; 3 TTL outputs*
\square DB-14064:Configurable 64 TTL I/O

Uncommitted Analog Inputs

2 individual $\pm 10 \mathrm{~V}$ analog inputs with 12 -bit resolution (16-bit optional)

High Speed Position Latch

Latches within 0.1 microseconds

Dedicated I/O

Main encoder inputs-Channel $A, A-B, B-1, I,-(\pm 12 \mathrm{~V}$ or TTL)
Auxiliary encoder-Channel $A, A-B, B-$ (not available on DMC-1425,-3425)

- Forward and reverse limit inputs-buffered*
- Home input—buffered*
- High-speed position latch input—buffered*
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors

Amplifier enable output
Error output
Encoder output compare

Minimum Servo Loop Update Time

250 microseconds
125 microseconds with fast firmware (DMC-14×5)

Maximum Encoder Feedback Rate

12 MHz

Maximum Stepper Rate

3 MHz (Full, half or microstep)

Power Requirements

DMC-1415 and DMC-1425 cards:
$+5 \mathrm{~V} 400 \mathrm{~mA}$
$-12 \mathrm{~V} 40 \mathrm{~mA}$
$+12 \mathrm{~V} 40 \mathrm{~mA}$
DMC-1415/1425/34x5 Box: accepts $90-260 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ supply

Environmental

Operating temperature: $0-70^{\circ} \mathrm{C}$ for card; $0-60^{\circ} \mathrm{C}$ for box
Humidity: $20-95 \%$ RH, non-condensing

Mechanical

DMC $-14 \times 5,-34 \times 5$ cards: $3.75 " \times 5.0^{\prime \prime}$
DMC-14x5,-34x5 boxes:5.1" $\times 6.8^{\prime \prime} \times 3.0^{\prime \prime}$

Connectors

- 37-pin D-type

[^0]
Instruction Set

Servo	
Motor	
AF	Analog feedback
DV	Dual loop operation (1415)
FA	Acceleration feedforward
FV	Velocity feedforward
IL	Integrator limit
KD	Derivative constant
KI	Integrator constant
KP	Proportional constant
NB	Notch bandwidth
NF	Notch frequency
NZ	Notch zero
OF	Offset
SH	Servo here
TL	Torque limit
TM	Sample time

Stepper Motor

DE Define encoder position
DP Define reference position
KS Stepper motor smoothing
MT Motor type
RP Report commanded position
TD Step counts output
TP Tell position of encoder
Brushless Motor (-1415,-3415 only)
BA Brushless axis
BB Brushless phase
BC Brushless calibration
BD Brushless degrees
BI Brushless inputs
BM Brushless modulo
BO Brushless offset
BS Brushless setup
BZ Brushless zero

I/O Commands

AL Arm latch
AO Set analog voltage
CB Clear bit
Cl Communication interrupt
II Input interrupt
OB Define output bit
OC Output compare function
OP Output port
SB Set bit
@IN[x] State of digital input x
@OUT[x] State of digital output x
@AN[x] Value of analog input x
System Configuration
BN Burn parameters
BP Burn program
BV Burn variables and arrays
CE Configure encoder type

System Configuration (cont.)	
CF	Configure unsolicited messages
CN	Configure switches
CO C	Configure 1/0 points
CW D	Data adjustment bit
DE D	Define dual encoder position
DP D	Define position
EO E	Echo off
IA S	Set IP address
IH In	Internet handle
IK E	Ethernet port blocking
IT In	Independent smoothing
LZ L	Leading zeros format
MB M	ModBus
MO M	Motor off
MT M	Motor type
PF P	Position format
QD D	Download array
QU U	Upload array
^R^S M	Master reset
VF V	Variable format
Math Functions	
@SIN[x]	Sine of x
@COS[x]	Cosine of x
@COM[x]] 1's complement of x
@ASIN[x]] Arcsine of x
@ACOS[x]	x] Arccosine of x
@ATAN[x]	x] Arctangent of x
@ABS[x]	Absolute value of x
@FRAC[x]	[Fraction portion of x
@ ${ }^{\text {NTI[x] }}$	Integer portion of x
@RND[x]	Round of x
@SQR[x]	Square root of x
Interrogation	
LA Lis	List arrays
LL	List labels
LS Lit	List program
LV Lis	List variables
MG	Message command
QR D	Data record
QZ R	Return data record
RP R	Report command position
RL R	Report latch
${ }^{\wedge}{ }^{\wedge} \mathrm{V}$ Fim	Firmware revision information
SC S	Stop code
TB T	Tell status
TC Teld	Tell error code
TD Teld	Tell dual encoder
TE Te	Tell error
TH T	Tell Ethernet handle
TI T	Tell input
TIME Ti	Time operand
TP	Tell position

Interrogation (cont.)	
TR	Trace program
TS	Tell switches
TT	Tell torque
TV	Tell velocity
TZ	Tell I/O configuration
WH	Which handle

Programming

BK Breakpoint
DA Deallocate variables/arrays
DL Download program
DM Dimension arrays
ED Edit program
ELSE Conditional statement
ENDIF End of cond. statement
EN End program
HX Halt execution
IF If statement
IN Input variable
JP Jump
JS Jump to subroutine
NO No-operation-for comments
RA Record array
RC Record interval for RA
RD Record data for RA
RE Return from Error
REM Remark program
RI Return from interrupt
SA Send command
SL Single step
UL Upload program
XQ Execute program
ZS Zero stack

- Comment

Error Control

BL Backward software limit
ER Error limit
FL Forward software limit
OE Off-on-error function
TL Torque limit
TW Timeout for in-position

Trippoint

AD After distance
Al After input
AM After motion profiler
AP After absolute position
AR After relative distance
AS At speed
AT After time
AV After vector distance
MC Motion complete
MF After motion-forward
MR After motion-reverse

Ethernet/RS232, 1- and 2-axis

DMC-14x5 Series

Hardware Accessories

ICM-1460

The ICM-1460 Interconnect Module provides a breakout to screw terminals for the 37 -pin D-type cable from the DMC-14x5 or 34×5 for quick connection of system hardware. The ICM-1460 is contained in a metal enclosure with dimensions of $6.9^{\prime \prime} \times 4.9^{\prime \prime} \times 2.6^{\prime \prime}$ and $0.2^{\prime \prime}$ diameter keyholes for mounting.The ICM is normally shipped configured for high amp enable, +5 V (-HAEN). For low amp enable, order ICM-1460-LAEN.

ICM-1460 OPTO

For applications requiring optoisolation, the ICM-1460 "OPTO" option provides $5-24 \mathrm{~V}$ optoisolation on all general inputs and outputs, home inputs, limits, and abort input.

ICM-1460 Interconnect Module
(shown with and without cover)

DB-14064 I/O Expansion

The DB-14064 is an optional board which provides 64 additional I/0 for the DMC-14×5 or 34×5 controller cards. This board mounts directly onto the back of the controller and provides $64 \mathrm{I} / 0$ points configurable by the user for inputs or outputs. The $1 / 0$ is accessible through two 50-pin headers.

DMC-34x5 Distributed Control Option

The DMC-34x5 Series distributed control system can operate with a single communication channel between the host and the master controller. This master controller is programmed to maintain communication with each slave. Commands sent by the host computer to the master controller are based on the multi-axis convention designating the axes as A, B, C, D, E, F, G, H.

The individual slave controllers can contain their own local application program. A slave program would be written to act as if the slave was operating independent of the distributed control network.

In most cases, the programming is done on a multi-axis level to simplify the programming. An application program written at the multi-axis level can command all axes of motion and apply trippoints to all axes. On the other hand, a slave controller program can drive only the local motors and include trippoints which refer to the local axes.

The multi-axis network may be configured automatically with the HC command. This single command is used to configure the number of axes, data update rate and number of 10 C devices in the system. DMC-3415
 and DMC-3425 controllers may be used in any combination for a total of up to 8 axes in the network.

DMC-3425

AMP-14110 1-axis and AMP-14120 2-axis $20 W$ Servo Drives The AMP-14110 and AMP-14120 are one-axis and two-axis linear drives for operating small brush-type servo motors.The AMP-14110 mounts directly to the DMC-1415 1-axis controller and the AMP-14120 mounts to the DMC-1425 2 -axis controller. The amplifiers require a $\pm 12-30$ VDC input. Output power is 20 W per amplifier. The gain of each transconductance linear amplifier is $0.1 \mathrm{~A} / \mathrm{N}$ at 1 A maximum current. The typical current loop bandwidth is 4 kHz . 100 mA maximum current is available as an option.

Ethernet/RS232, 1- and 2-axis

DMC-14x5 Series

Connectors

DMC-1415, 3415 J3	
Main 37-pin D-type	
1 Reset* (TTL)	20 Error*
2 Amp enable	21 ACMD (STEP for Stepper Motor)
3 Output 3	22 Output 2
4 Output 1	23 Output compare
5 Analog Input 1	24 Analog Input 2
6 Input 7	25 Input 6
7 Input 5	26 Input 4
8 Input 3	27 Input 2
9 Input 1 (and latch)	28 Forward limit
10 +5V	29 Reverse limit
11 Ground	30 Home
$12+12 V$	31 -12V
13 Ground	32 Main Encoder A+
14 Main Encoder A-	33 Main Encoder B+
15 Main Encoder B-	34 Main Encoder I+
16 Main Encoder I-	35 Auxiliary A+
17 Auxiliary A-	36 Auxiliary B+
18 Auxiliary B-	37 Abort*
19 ACMD Phase B	
(DIR for Stepper Motor)	
(For Sinusoidal Commutation)	

DMC-1425, -3425 J3
Main 37-pin D-type

1 Reset*	20 Error*
2 Amp Enable (both motors)	21 ACMDX/STEPX
3 Output 3	22 Output 2
4 Output 1	23 Output compare
5 Analog 1	24 Analog 2
6 Index Y	25 Home Y
7 Reverse limitY	26 Forward limit Y
8 Input 3	27 Input 2 (Y latch input)
9 Input 1 (X latch input)	28 Forward limit X
$10+5 \mathrm{~V}$	29 Reverse limit X
11 Ground	30 Home X
$12+12 \mathrm{~V}$	31-12V
13 Ground	$32 \mathrm{XEncoder} \mathrm{A}+$
14 X Encoder A -	$33 \times$ Encoder B+
15 X Encoder B -	$34 \mathrm{XEncoder} \mathrm{I+}$
16 X Encoder I-	35 Y Encoder A+
17 Y Encoder A -	36 Y Encoder B +
18 Y Encoder B -	37 Abort*
19 ACMDY/DIRX	

Ordering Information

PART NUMBER	DESCRIPTION	QUANTITY 1	QUANTITY 100
DMC-1415-card (or -3415)	1-axis stand-alone with Ethernet \& RS232	$\$ 595$	$\$ 395$
DMC-1415-box (or -3415)	DMC-1415 in enclosure with power supply	$\$ 795$	$\$ 545$
DMC-1425-card (or -3425)	2-axis controller for 2 servo motors	$\$ 695$	$\$ 445$
DMC-1425-box (or -3425)	DMC-1425 in enclosure with power supply	$\$ 895$	$\$ 595$
-STEPPER option	Controls 2 step motors instead of 2 servo motors	No extra charge	
CABLE 37-pin D	37-pin D-type cable	$\$ 25$	
ICM-1460	Interconnect Module. Specify -HAEN for high amp enable	$\$ 145$	$\$ 95$
ICM-1460-STEPPER	or-LAEN for low amp enable		
ICM-1460-OPTO	Interconnect for DMC-1425-STEPPER	$\$ 145$	$\$ 95$
AMP-14110	ICM with optoisolated inputs and outputs	$\$ 195$	$\$ 145$
AMP-14120	1-axis 20W servo amplifier board for DMC-1415-card	$\$ 75$	$\$ 55$
DB-14064	2-axis 20W servo amplifier board for DMC-1425-card	$\$ 125$	$\$ 105$
Galil Utilities	Expansion board for 64 I/0 (for card-level only)	$\$ 295$	$\$ 195$
DMCWIN32	Communication drivers, SmartTERM, DMCDOS	$\$ 20$ for CD; free download	
WSDK	Windows API Tool Kit (VB, C, C++, etc.)	Included with Utilities	
ACtiveX Tool Kit	Set-up, tuning and analysis software	$\$ 195$	$\$ 595$

[^0]: *Optically isolated I/O available with ICM-1460-OPTO option.

