

Precise thinking

GlobalNavigationSatelliteSystems(GNSS)

NovAtel's complete line of precise positioning engines, enclosures, antennas and software is developed to meet a wide range of accuracy and cost requirements for all satellite navigational systems.

GALILEO

The emerging Galileosystem, sponsored by the European Union and managedbytheEuropeanSpaceAgency(ESA), launchedtheGIOVE-A testsatelliteonDecember 28, 2005. Fulloperational deployment of the constellation is expected by 2012. A ground-based control system will alsobedeveloped and deployed, similar to the GPS Control Segment. In addition to controlling the satellites, the Galileo Ground Mission SegmentwillalsogenerateintegrityinformationforSafetyofLifeusers similar to the US FAA Wide Area Augmentation System.

30 satellites will be organized into three orbital planes consisting of 9 satellites and one spare with an inclination of 56 degrees, making acompleteorbitinapproximately14hours,21minutes.Satelliteswill broadcast using spread-spectrum modulation on E1, E5A, E5B and E6 frequencies.

Consult www.esa.int/esaNA/galileo.html for exact development statusoftheGalileoconstellationanditscapabilities.OnJuly26,2007, anagreementwasannouncedbetweentheEuropeanUnionandthe United States to create interoperable E1/L1 signals. The information shown here reflects all public information with respect to those common signals.

Fundamental frequency (Fo)	10.23 MHz
RF Carrier	
E1 frequency (Galileo)	1575.42 MHz
E5A frequency (Galileo) (115 * Fo)	1176.45 MHz
ALT BOC signal covers the bandwidth of both E5A and E5B (116.5 * Fo)	1191.795 MHz (centre frequency)
E5B frequency (Galileo) (118 * Fo)	1207.14 MHz
E6 frequency (Galileo) (125 * Fo)	1278.75 MHz
Code chip	
E1 code chip (Galileo A channel) (Fo / 4) Frequency	616 L1 cycles / chip 2.5575 MHz
E1 code chip (Galileo B&C channel) (Fo / 10) Frequency	1540 cycles / chip 1.023 MHz
E5A code chip (Galileo) (Fo)	115 E5a cycles / chip 10.23 MHz
E5B code chip (Galileo) (Fo) Frequency	118 E5b cycles / chip 10.23 MHz
E6A	Not published
E6 B/C code chip (Galileo) (Fo) Frequency	250 E6 cycles / chip 5.115 MHz
Alt-BOC code chip (Galileo) (Fo) Frequency	N/A cycles / chip 10.23 MHz
Pseudorandom noise (PRN) sequence	
E1A channel (PRS) BOC _{cos} (15, 2.5) Subscript cos implies a cosine-shaped subcarrier, otherwise a sine-shaped subcarrier relationship is implied	Not published
E1B channel pseudorandom noise sequenceCBOC(6,1,1/11) Length Primary code period Secondary code length	4092 E1B code chips 4 msec N/A

E1C channel pseudorandom noise sequenceCBOC(6,1,1/11)

Length

Primary code period

GPS

Declaredfullyoperationalin1995,theGlobalPositioningSystem(GPS) constellation in 2007 consists of 30 satellites in Full Operation Capability (FOC) status. The satellites are organized into six orbital planes with an inclination of 55 degrees, making a complete orbit in approximately 11 hours, 58 minutes.

All satellites are dual-frequency and broadcast on L1 and L2 using spread-spectrummodulation.L5iscurrentlybroadcastfromaWAAS geostationary satellite. As of November 2007, four satellites are broadcastingL2C.TheGPSModernizationprogramwilldeployL2Cand L5capabilityonanewgenerationofBlockIIF,BlockIIR-MandBlockIII satellites, as well as deploying the new M-code signals on L1 and L2 for exclusive US military use.

Consult www.navcen.uscg.gov/gps for exact operational status of the GPS constellation and its capabilities.

GLONASS

The Global Navigation Satellite System (GLONASS) constellation is operated for the Russian government by the Russian Space Forces. The constellation had dwindled to 7 operational satellites in 2001. As of mid-2007, there are now 14 satellites declared operational, with plans announced to increase this total to 18 by the end of 2007.

Thesatellites are organized into three orbital planes with an inclination of 64.8 degrees, making a complete or bit in approximately 11 hours, 15 minutes. Each satellite broadcasts L1 and L2 signals on unique frequency channels (see below). Plans have been announced for an L3 signal at 1201.5 MHz. A decision will be made at the end of 2007 whether this signal will be modulated with CDMA (similar to GPS) or FDMA (similar to GLONASS L1 and L2).

Consultwww.glonass-ianc-rsa.ruforexactoperationalstatusofthe GLONASS constellation and its capabilities.

Fundamental frequency (Fo)	10.23 MHz	Fundamental frequency (Fo)	10.23 MHz
RF Carrier		RF Carrier	
L1 Frequency (GPS) (154 * Fo)	1575.42 MHz	L1 frequency (GLONASS) for $F_{k=0}$, K = (-7 to +13) Channel spacing = 562.5 kHz	1602.000 MHz (k = 0)
L2 frequency (GPS) (120 * Fo)	1227.6 MHz	L2 frequency (GLONASS) for $F_{k=0}$, K = (-7 to +13)	1246.000 MHz (k = 0)
L1C frequency (154 * Fo)	1575.42 MHz	Channel spacing = 437.5 kHz	
L2C frequency (120 * Fo)	1227.6 MHz	L1 standard accuracy code chip (GLONASS)	3135.03 cycles / chip
L5 frequency (115 * Fo)	1176.45 MHz	Frequency	0.511 MHz
Code chip		Frequency	5.11 MHz
L1 C/A code chip (Fo / 10 = 1.023 MHz)	1540 L1 cycles / chip	This number only applies for the center frequency and will change depending on the GLONASS satellite	
L1C code chip (Fo / 10 = 1.023 MHz)	1540 L1 cycles / chip	being tracked	2438 36 L2 cycles / chip
L1 P-code chip (Fo = 10.23 MHz)	154 L1 cycles / chip	Frequency	0.511 MHz
L2 P-code chip (Fo = 10.23 MHz)	120 L2 cycles / chip	L2 high accuracy code chip (GLONASS) Frequency	243.836 L2 cycles / chip 5.11 MHz
L2C code chip; L2-CM = civil-moderate;	(L2-CM) first half of period	C/A pseudorandom noise sequence	
L2-CL = civil long	of 1.955 usec	GLONASS L1 standard accuracy	Length = 511 code chips
chipping rate of 511.5 kbps	of 1.955 usec	pseudorandom noise sequence	Period = 1 msec
L5 code chip (Fo = 10.23 MHz)	115 L5 cycles / chip	GLONASS L2 standard accuracy pseudorandom noise sequence	Length = 511 code chips Period = 1 msec
Pseudorandom noise (PRN) sequence		Nav bit	
L1 C/A code pseudorandom noise sequence	Length = 1023 C/A chips	GLONASS Navigation Bit	20 PRN sequences per data bit
L1P-codepseudorandomnoisesequencesequence	Length = 6.187×10^{12} chips	(1 data bit is made up of two meander bits)	Toops(meander)/Soops(data)
L1Cpseudorandomnoisesequencefordata (L1Cd)	Period = 1 week Length = 10,230 code chips	GLONASS Navigation String (applicableforL1andL2onM-classsatellitesonly)	String length 85 data bits @ 50 bps +30 bits
BOC(1,1)	Period = 10 msec		time mark @ 100 bps
	Deviade 10 mag a		String data rate
(L1Cp) = TMBOC	Period = 10 msec		
$ (L1Cp) = TMBOC \\ AllsymbolsareBOC(1,1) except those BOC(6,1) symbols \\ that occur in the ith location of 10230 chip sequence $	Period = 10 msec		0.5 Hz per string
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) 1.2 P-code pseudorandom poise sequence	Period = 10 msec	COMPAS	0.5 Hz per string
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence	Length = 6.187 X 10 ¹² chips Period = 1 week	COMPASS is a GNSS system appounced b	0.5 Hz per string
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec	COMPASS is a GNSS system announced b China that is currently in the development	0.5 Hz per string S by the People's Republic of t stage. ITU filings for radio
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec	COMPASS is a GNSS system announced b China that is currently in the developmen navigation frequency allocation indicatet on 1589.74 MHz, 1561.1 MHz, 1268.52 M	o.5 Hz per string o.5 Hz per string oy the People's Republic of t stage. ITU filings for radio hatthesystem will transmit MHz, 1207.14 MHz.
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = $10,230$ chips	COMPASS is a GNSS system announced b China that is currently in the developmen navigation frequency allocation indicatet on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galilee respectively Solution stothe interoperabi	o.5 Hz per string 0.5 Hz per string S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit MHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q)	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = 1 msec Length = $10,230$ chips	COMPASS is a GNSS system announced by China that is currently in the development navigation frequency allocation indicated on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileo respectively. Solutions to the interoperability GNSS systems and non-interfering compar-	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit MHz, 1207.14 MHz. o E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10)	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = 1 msec Length = $10,230$ chips Period = 1 msec	COMPASS is a GNSS system announced by Compass is a GNSS system announced by China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileo respectively. Solutions to the interoperabil GNSS systems and non-interfering compa- remain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. o E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec	COMPASS is a GNSS system announced by Compass is a GNSS system announced by China that is currently in the development navigation frequency allocation indicated on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galilee respectively. Solutions to the interoperable GNSS systems and non-interfering compar- remain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = 1 msec Length = $10,230$ chips Period = 1 msec Bitlength= 20 PRNsequences of L1	COMPASS is a GNSS system announced by China that is currently in the development navigation frequency allocation indicated on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galilee respectively. Solutions to the interoperabil GNSS systems and non-interfering compar- remain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. o E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = 1 msec Length = $10,230$ chips Period = 1 msec Bitlength= 20 PRNsequences of L1 50 bits / sec Unpublished	COMPASS is a GNSS system announced by China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileo respectively. Solutions to the interoperabil GNSS systems and non-interfering compar- remain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. o E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage.ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = TMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit	Period = 10 msec Length = 6.187×10^{12} chips Period = 1 week Length = $10,230$ chips Period = 20 msec Length = $767,250$ chips Period = 1500 msec Length = $10,230$ chips Period = 1 msec Length = $10,230$ chips Period = 1 msec Bitlength= 20 PRNsequences of L1 50 bits / sec Unpublished Symbollength= 1 PRNsequence of L1C 100 symbols / sec	COMPASS is a GNSS system announced to China that is currently in the development navigation frequency allocation indicated on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperable GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperable GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit GPS L1C (data)	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperable GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-I) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicated on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galiler respectively. Solutions to the interoperabils GNSS systems and non-interfering compar- remain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lityof COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-1) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit GPS L1C (data)	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2 = 1.955 usec	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequence L5 pseudorandom noise sequences for data (L5-1) BPSK(10) L5 pseudorandom noise sequences for pilot (L5-Q) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit GPS L1C (data)	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols/secafterhalf-rate	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOCAllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbolsthat occur in the ith location of 10230 chip sequence(i=0,4,6,29,33,37,39,62101897,10201,10203,10226)L2 P-code pseudorandom noise sequenceL2-CM pseudorandom noise sequenceL2-CL pseudorandom noise sequenceL2-CL pseudorandom noise sequenceL5 pseudorandom noise sequences for data (L5-1)BPSK(10)L5 pseudorandom noise sequences for pilot (L5-Q)BPSK(10)CPS L1 Navigation bitGPS L1P navigation bitGPS L1C (data)GPS L2-CM navigation bitGPS L2P Navigation bit	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Symbolength = 10,230 chips Period = 1 msec Unpublished Symbollength=1PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols / sec 4 100 symbols / sec	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galileer respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOCAllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbolsthat occur in the ith location of 10230 chip sequence(i=0,4,6,29,33,37,39,62101897,10201,10203,10226)L2 P-code pseudorandom noise sequenceL2-CM pseudorandom noise sequenceL2-CL pseudorandom noise sequenceL2-CL pseudorandom noise sequenceL5 pseudorandom noise sequences for data (L5-1)BPSK(10)L5 pseudorandom noise sequences for pilot (L5-Q)BPSK(10)Nav bitGPS L1 Navigation bitGPS L1P navigation bitGPS L1C (data)GPS L2-CM navigation bitGPS L2P Navigation bit (L5-1)	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols / sec Unpublished Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols / sec Unpublished Thesymbolsofthedatacodeare	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galider respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
(L1Cp) = 1MBOCAllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbolsthat occur in the ith location of 10230 chip sequence(i=0,4,6,29,33,37,39,62101897,10201,10203,10226)L2 P-code pseudorandom noise sequenceL2-CM pseudorandom noise sequenceL2-CL pseudorandom noise sequenceL5 pseudorandom noise sequences for data (L5-1)BPSK(10)L5 pseudorandom noise sequences for pilot (L5-Q)BPSK(10)L3 pseudorandom noise sequences for pilot (L5-Q)BPSK(10)CGPS L1 Navigation bitGPS L1P navigation bitGPS L1C (data)GPS L2-CM navigation bitGPS L2P Navigation bit (L5-I)L5-1 signal: secondary code of 10 bits(1 L5 BN commerce (bit)	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols / sec Unpublished Symbols / sec Unpublished Thesymbolsofthedatacodeare aligned to the symbols of the corandry and a phone th	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galiler respectively. Solutions to the interoperabils GNSS systems and non-interfering comparement in unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems
ILICp) = IMBOC AllsymbolsareBOC(1,1)exceptthoseBOC(6,1)symbols that occur in the i _{th} location of 10230 chip sequence (i=0,4,6,29,33,37,39,62101897,10201,10203,10226) L2 P-code pseudorandom noise sequence L2-CM pseudorandom noise sequence L2-CL pseudorandom noise sequences for data (L5-1) BPSK(10) L5 pseudorandom noise sequences for data (L5-1) BPSK(10) Nav bit GPS L1 Navigation bit GPS L1P navigation bit GPS L1P navigation bit GPS L1C (data) GPS L2-CM navigation bit GPS L2P Navigation bit GPS L2P Navigation bit (L5-1) L5-1 signal: secondary code of 10 bits (1 L5 PRN sequence / bit) L5-Q signal: secondary code of 20 bits	Period = 10 msec Length = 6.187 X 10 ¹² chips Period = 1 week Length = 10,230 chips Period = 20 msec Length = 767,250 chips Period = 1 500 msec Length = 10,230 chips Period = 1 msec Length = 10,230 chips Period = 1 msec Bitlength=20PRNsequences of L1 50 bits / sec Unpublished Symbollength=1PRNsequence of L1C 100 symbols / sec Pilot: Secondary overlay code sequence of 1800 bits, 18 second period is modulo-2 added to the pilot Symbollength=1PRNsequence of L2C = 1.955 usec 100 symbols / sec Unpublished Thesymbolsofthedatacodeare aligned to the symbols of the secondary code and have the same period per symbol as	COMPASS is a GNSS system announced the China that is currently in the development navigation frequency allocation indicates on 1589.74 MHz, 1561.1 MHz, 1268.52 M These frequencies correspond to Galider respectively. Solutions to the interoperabils GNSS systems and non-interfering comparemain unpublished.	S by the People's Republic of t stage. ITU filings for radio hatthesystem will transmit AHz, 1207.14 MHz. b E1, E2, E6 and E5a, lity of COMPASS with other atibility with those systems

Secondary code length	25 chips	L
E5A I channel pseudorandom noise sequence BPSK(10) Primary code length Primary code period Secondary code length	10230E5Acodechips 1 msec 20 chips	L5 Bl
E5A Q channel pseudorandom noise sequence BPSK(10)		BI
Primary code length	10230E5Acodechips	N
Secondary code length	1 msec	G
E5B I channel pseudorandom noise sequence BPSK(10) Primary code length Primary code period Secondary code length	10230E5Bcodechips 1 msec 4 chips	G
E5B Q channel pseudorandom noise sequence BPSK(10)	· · · · · · · · · · · · · · · · · · ·	G
Primary code length	10230E5Bcodechips	
Primary code period	1 msec	
Secondary code length	100 chips	
E6A channel pseudorandom noise sequenceBOC _{cos} (10,5)	Not published - PRS	
E6B channel pseudorandom noise sequence BPSK(5)	5115 E6B code chips 1 msec	G
Secondary code length	TUU CNIPS	
ECC channel pseudorandom holse sequence BPSK(5)	1 msec	
Secondary code length	100 chips	G
Nav bit		G
Open Service data (E5A-I channel)	50 symbols / second	(1
Safety of Life Service data (E1B and E5B-I channels)	250symbols/second	L5 (1
Commercial Service data (E6B channel)	1000symbols/second	

ACCORDED IN

S.

OEMV Engines NovAtel's OEMV family of field upgradeablepositioningengines incorporates GPS+GLONASS positioning and AdVance RTK for ear-instantaneous convergence

4092 E1C code chips

4 msec

DL-V3 NovAtel's DL-V3 integrates the OEMV-3 positioning engine with Ethernet, USB, Bluetooth and Compact Flash data logging capability. Omnistar™ HP satellite corrections also available.

of the data signal (10 ms or 100 symbols / sec)

> SPAN NovAtel'sSPANTechnologyprovides tightly coupled GPS and inertial capabilityforimprovednavigation, accurateattitudedeterminationand bridging of satellite out ages. IMUs fromHoneywell,NorthropGrumman and IMAR supported.

Antennas NovAtel's pinwheel antennas providepinpointaccuracyandideal radiation patterns. Our special purpose antennas are ideal for high-performance land and air vehicle applications.

www.novatel.com