CUDA
CUFFT Library

PG-00000-003 V2.3
June, 2009

CUFFT Library PG-00000-003_V2.3

Confidential Information

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice
This source code is subject to NVIDIA ownership rights under U.S. and international Copyright laws.

This software and the information contained herein is PROPRIETARY and CONFIDENTIAL to NVIDIA
and is being provided under the terms and conditions of a Non-Disclosure Agreement. Any reproduction
or disclosure to any third party without the express written consent of NVIDIA is prohibited.

NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE CODE FOR
ANY PURPOSE. IT IS PROVIDED “AS IS” WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY
KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE.

U.S. Government End Users. This source code is a “commercial item” as that term is defined at 48 C.E.R.
2.101 (OCT 1995), consisting of “commercial computer software” and “commercial computer software
documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S.
Government only as a commercial end item. Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1
through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the source code with only those
rights set forth herein.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2006-2009 by NVIDIA Corporation. All rights reserved.

NVIDIA Corporation

B e .“_\\—

CUFRFT Library e 1
CUFFT Types and Definitions i e e e e e et e 1
Type cufftHandle 2
Type cufftResUIt 2
Type cufftReal e 2
Type cufftDoubleReal 3
Type cufftComplex e 3
Type cufftDoubleComplex e 3
CUFRFT Transform TYPesS. . . . oot e e e e e e e 3
CUFFT Transform DireCtions. ot e e e e e e 4
CUFFT APL FUNCLIONS. . . o o ot e e e e e e e e e e e e e e e e e 5
Function cufftPlanld(). oot 6
Function cufftPlan2d(). o e 7
Function cufftPlan3d(). oot 7
Function cufftDestroy() o oot e 8
Function cUfftEXeCC2C() o ottt i e 8
Function CUfftEXeCR2C() o it e 9
Function CUfftEXeCC2R() o i e e 10
Function CUfftEXECZ2Z() o o it e 11
Function CUfftEXeCD2Z() o o ot 12
Function CUfftEXeCZ2D() o ot 12
Accuracy and Performance. e 13
CUFFT Code EXampIles.ottt e e et e e e e e e e e e 15
1D Complex-to-Complex Transforms. e 15
1D Real-to-Complex Transformso 16
2D Complex-to-Complex Transforms. 16
2D Complex-to-Real Transforms 17
3D Complex-to-Complex Transforms. 18
PG-00000-003_V2.3

NVIDIA

2

7 P g _

/e = —
o - —

gy

CUFFT Library

This document describes CUFFT, the NVIDIA® cUDA™ (compute
unified device architecture) Fast Fourier Transform (FFT) library. The
FFT is a divide-and-conquer algorithm for efficiently computing
discrete Fourier transforms of complex or real-valued data sets, and it
is one of the most important and widely used numerical algorithms,
with applications that include computational physics and general
signal processing. The CUFFT library provides a simple interface for
computing parallel FFTs on an NVIDIA GPU, which allows users to
leverage the floating-point power and parallelism of the GPU without
having to develop a custom, GPU-based FFT implementation.

FFT libraries typically vary in terms of supported transform sizes and
data types. For example, some libraries only implement Radix-2 FFTs,
restricting the transform size to a power of two, while other
implementations support arbitrary transform sizes. This version of the
CUFFT library supports the following features:

o 1D, 2D, and 3D transforms of complex and real-valued data
0 Batch execution for doing multiple 1D transforms in parallel

0 2D and 3D transform sizes in the range [2, 16384] in any
dimension

0 1D transform sizes up to 8 million elements
0 In-place and out-of-place transforms for real and complex data

0 Double-precision transforms on compatible hardware (GT200 and
later GPUs)

CUFFT Types and Definitions

The next sections describe the CUFFT types and transform directions:
o “Type cufftHandle” on page 2

0 “Type cufftResult” on page 2

o “Type cufftReal” on page 2

PG-00000-003_V2.3 1

NVIDIA

CUDA CUFFT Library

“Type cufftDoubleReal” on page 3
“Type cufftComplex” on page 3

“Type cufftDoubleComplex” on page 3
“CUFFT Transform Types” on page 3

00 00D

“CUFFT Transform Directions” on page 4

Type cufftHandle
typedef unsigned int cufftHandle;

is a handle type used to store and access CUFFT plans. For example,
the user receives a handle after creating a CUFFT plan and uses this
handle to execute the plan.

Type cufftResult
typedef enum cufftResult_t cufftResult;

is an enumeration of values used exclusively as API function return
values. The possible return values are defined as follows:
Return Values

CUFFT_SUCCESS Any CUFFT operation is successful.
CUFFT_INVALID_PLAN CUFFT is passed an invalid plan handle.
CUFFT_ALLOC_FAILED CUFFT failed to allocate GPU memory.
CUFFT_INVALID_TYPE The user requests an unsupported type.
CUFFT_INVALID_VALUE The user specifies a bad memory pointer.
CUFFT_INTERNAL_ERROR Used for all internal driver errors.
CUFFT_EXEC_FAILED CUFFT failed to execute an FFT on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_SHUTDOWN_FAILED The CUFFT library failed to shut down.
CUFFT_INVALID_SIZE The user specifies an unsupported FFT size.

Type cufftReal
typedef float cufftReal;
is a single-precision, floating-point real data type.

PG-00000-003_V2.3 2
NVIDIA

CUDA CUFFT Library

Type cufftDoubleReal
typedef double cufftDoubleReal;
is a double-precision, floating-point real data type.

Type cufftComplex
typedef cuComplex cufftComplex;

is a single-precision, floating-point complex data type that consists of
interleaved real and imaginary components.

Type cufftDoubleComplex
typedef cuDoubleComplex cufftDoubleComplex;

is a double-precision, floating-point complex data type that consists of
interleaved real and imaginary components.

CUFFT Transform Types

The CUFFT library supports complex- and real-data transforms. The
cufftType data type is an enumeration of the types of transform data
supported by CUFFT:

typedef enum cufftType t {
CUFFT_R2C = 0Ox2a, // Real to complex (interleaved)

CUFFT_C2R = 0x2c, // Complex (interleaved) to real
CUFFT_C2C = 0x29, // Complex to complex, interleaved
CUFFT_D2Z = Ox6a, // Double to double-complex
CUFFT_z2D = 0x6c, // Double-complex to double
CUFFT_Zz2Z = 0x69 // Double-complex to double-complex

} cufftType;

For complex FFTs, the input and output arrays must interleave the real
and imaginary parts (the cufftComplex type). The transform size in
each dimension is the number of cufftComplex elements. The
CUFFT_C2C constant can be passed to any plan creation function to
configure a single-precision complex-to-complex FFT. Pass the
CUFFT_Z2Z constant to configure a double-precision complex-to-
complex FFT.

3 PG-00000-003_V2.3
NVIDIA

CUDA

CUFFT Library

For real-to-complex FFTs, the output array holds only the non-
redundant complex coefficients. So for an N-element transform, the
output array holds N/2+1 cufftComplex terms. For higher-
dimensional real transforms of the form NOXN1X...XNn, the last
dimension is cut in half such that the output data is NOXN1X...X(Nn/
2+1) complex elements. Therefore, in order to perform an in-place
FFT, the user has to pad the input array in the last dimension to (Nn/
2+1) complex elements or 2*(N/2+1) real elements. Note that the
real-to-complex transform is implicitly forward. Passing the
CUFFT_R2C constant to any plan creation function configures a single-
precision real-to-complex FFT. Passing the CUFFT_D2Z constant
configures a double-precision real-to-complex FFT.

The requirements for complex-to-real FFTs are similar to those for real-
to-complex. In this case, the input array holds only the non-redundant,
N/2+1 complex coefficients from a real-to-complex transform. The
output is simply N elements of type cufftReal. However, for an in-
place transform, the input size must be padded to 2*(N/2+1) real
elements. The complex-to-real transform is implicitly inverse. Passing
the CUFFT_C2R constant to any plan creation function configures a
single-precision complex-to-real FFT. Passing CUFFT_Z2D constant
configures a double-precision complex-to-real FFT.

For 1D complex-to-complex transforms, the stride between signals in a
batch is assumed to be the number of cufftComplex elements in the
logical transform size. However, for real-data FFTs, the distance
between signals in a batch depends on whether the transform is in-
place or out-of-place. For in-place FFTs, the input stride is assumed to
be 2*(N/2+1) cufftReal elements or N/2+1 cufftComplex elements.
For out-of-place transforms, the input and output strides match the
logical transform size (N) and the non-redundant size (N/2+1),
respectively.

CUFFT Transform Directions

The CUFFT library defines forward and inverse Fast Fourier
Transforms according to the sign of the complex exponential term:
#define CUFFT_FORWARD -1
#define CUFFT_INVERSE 1

PG-00000-003_V2.3 4

NVIDIA

CUDA

CUFFT Library

For higher-dimensional transforms (2D and 3D), CUFFT performs
FFTs in row-major or C order. For example, if the user requests a 3D
transform plan for sizes X, Y, and Z, CUFFT transforms along Z, Y, and
then X. The user can configure column-major FFTs by simply changing
the order of the size parameters to the plan creation API functions.

CUFFT performs un-normalized FFTs; that is, performing a forward
FFT on an input data set followed by an inverse FFT on the resulting
set yields data that is equal to the input scaled by the number of
elements. Scaling either transform by the reciprocal of the size of the
data set is left for the user to perform as seen fit.

CUFFT API Functions

The CUFFT API is modeled after FFTW (see http://www.fftw.org),
which is one of the most popular and efficient CPU-based FFT
libraries. FFTW provides a simple configuration mechanism called a
plan that completely specifies the optimal —that is, the minimum
floating-point operation (flop) —plan of execution for a particular FFT
size and data type. The advantage of this approach is that once the
user creates a plan, the library stores whatever state is needed to
execute the plan multiple times without recalculation of the
configuration. The FFTW model works well for CUFFT because
different kinds of FFTs require different thread configurations and
GPU resources, and plans are a simple way to store and reuse
configurations.

The CUFFT library initializes internal data upon the first invocation of
an API function. Therefore, all API functions could return the
CUFFT_SETUP_FAILED error code if the library fails to initialize.
CUFFT shuts down automatically when all user-created FFT plans are
destroyed.

The CUFFT functions are as follows:

0 “Function cufftPlan1ld()” on page 6
0 “Function cufftPlan2d()” on page 7
0 “Function cufftPlan3d()” on page 7
0 “Function cufftDestroy()” on page 8

PG-00000-003_V2.3
NVIDIA

CUDA

CUFFT Library

“Function cufftExecC2C()” on page 8
“Function cufftExecR2C()” on page 9
“Function cufftExecC2R()” on page 10
“Function cufftExecZ2Z()” on page 11
“Function cufftExecD2Z()” on page 12

0000 0D

“Function cufftExecZ2D()” on page 12

Function cufftPlan1d()

cufftResult
cufftPlanld(cufftHandle *plan, int nx, cufftType type,
int batch);

creates a 1D FFT plan configuration for a specified signal size and data

type. The batch input parameter tells CUFFT how many 1D
transforms to configure.

Input

plan Pointer to a cufftHandle object

nx The transform size (e.g., 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for complex to complex)
batch Number of transforms of size nx

Output

plan Contains a CUFFT 1D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT libraty failed to initialize.
CUFFT_INVALID_SIZE The nx parameter is not a supported size.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resources for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
PG-00000-003_V2.3 6

NVIDIA

CUDA CUFFT Library

Function cufftPlan2d()

cufftResult
cufftPlan2d(cufftHandle *plan, int nx, int ny,
cufftType type);

creates a 2D FFT plan configuration according to specified signal sizes

and data type. This function is the same as cufftPlan1d() except that
it takes a second size parameter, ny, and does not support batching.

Input

plan Pointer to a cufftHandle object

nx The transform size in the X dimension (number of rows)

ny The transform size in the Y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for complex to real)

Output
plan Contains a CUFFT 2D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_SIZE The nx ot ny parameter is not a supported size.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resoutces for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.

Function cufftPlan3d()

cufftResult
cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz,
cufftType type);

creates a 3D FFT plan configuration according to specified signal sizes
and data type. This function is the same as cufftPlan2d() except that
it takes a third size parameter nz. :

Input
plan Pointer to a cufftHandle object
nx The transform size in the X dimension
ny The transform size in the Y dimension
7 PG-00000-003_V2.3

NVIDIA

CUDA CUFFT Library

Input (continued)

nz The transform size in the Z dimension

type The transform data type (e.g., CUFFT_R2C for real to complex)

Output
plan Contains a CUFFT 3D plan handle value

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_SIZE Parameter Nx, Ny, ot Nz is not a supported size.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_ALLOC_FAILED Allocation of GPU resources for the plan failed.
CUFFT_SUCCESS CUFFT successfully created the FFT plan.

Function cufftDestroy()
cufftResult
cufftDestroy(cufftHandle plan);

frees all GPU resources associated with a CUFFT plan and destroys the
internal plan data structure. This function should be called once a plan
is no longer needed to avoid wasting GPU memory.

Input

plan The cufftHandle object of the plan to be destroyed.

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_SHUTDOWN_FAILED CUFFT library failed to shut down.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_SUCCESS CUFFT successfully destroyed the FFT plan.

Function cufftExecC2C()

cufftResult
cufftExecC2C(cufftHandle plan, cufftComplex *idata,
cufftComplex *odata, int direction);

executes a CUFFT single-precision complex-to-complex transform
plan as specified by direction. CUFFT uses as input data the GPU

PG-00000-003_V2.3 8
NVIDIA

CUDA CUFFT Library

memory pointed to by the idata parameter. This function stores the
Fourier coefficients in the odata array. If idata and odata are the
same, this method does an in-place transform.

Input

plan The cufftHandle object for the plan to update

idata Pointer to the single-precision complex input data (in GPU
memory) to transform

odata Pointer to the single-precision complex output data (in GPU

memory)
direction The transform direction: CUFFT_FORWARD or CUFFT_INVERSE

Output

odata Contains the complex Foutier coefficients

Return Values
CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE The idata, odata, and/or direction
parameter is not valid.

CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

Function cufftExecR2C()

cufftResult

cufftExecR2C(cufftHandle plan, cufftReal *idata,
cufftComplex *odata);

executes a CUFFT single-precision real-to-complex (implicitly

forward) transform plan. CUFFT uses as input data the GPU memory

pointed to by the idata parameter. This function stores the non-

redundant Fourier coefficients in the odata array. If idata and odata

are the same, this method does an in-place transform (See “CUFFT

Transform Types” on page 3 for details on real data FFTs.)

Input

plan The cufftHandle object for the plan to update

9 PG-00000-003_V2.3
NVIDIA

CUDA CUFFT Library

Input (continued)

idata Pointer to the single-precision real input data (in GPU memory) to
transform
odata Pointer to the single-precision complex output data (in GPU
memory)
Output

odata Contains the complex Foutier coefficients

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE The idata and/or odata parameter is not valid.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

Function cufftExecC2R()

cufftResult

cufFftExecC2R(cufftHandle plan, cufftComplex *idata,
cufftReal *odata);

executes a CUFFT single-precision complex-to-real (implicitly inverse)
transform plan. CUFFT uses as input data the GPU memory pointed to
by the idata parameter. The input array holds only the non-
redundant complex Fourier coefficients. This function stores the real
output values in the odata array. If idata and odata are the same, this
method does an in-place transform. (See “CUFFT Transform Types”
on page 3 for details on real data FFTs.)

Input
plan The cufftHandle object for the plan to update
idata Pointer to the single-precision complex input data (in GPU
memory) to transform
odata Pointer to the single-precision real output data (in GPU memory)
Output

odata Contains the real-valued output data

PG-00000-003_V2.3 10
NVIDIA

CUDA

CUFFT Library

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE The idata and/or odata parameter is not valid.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

Function cufftExecZ2Z()

11

cufftResult
cufftExecz2Z(cufftHandle plan,
cufftDoubleComplex *idata,
cufftDoubleComplex *odata, int direction);
executes a CUFFT double-precision complex-to-complex transform
plan as specified by direction. CUFFT uses as input data the GPU
memory pointed to by the idata parameter. This function stores the
Fourier coefficients in the odata array. If idata and odata are the
same, this method does an in-place transform.

Input

plan The cufftHandle object for the plan to update

idata Pointer to the double-precision complex input data (in GPU
memory) to transform

odata Pointer to the double-precision complex output data (in GPU

memory)
direction The transform direction: CUFFT_FORWARD or CUFFT _INVERSE

Output

odata Contains the complex Fourier coefficients

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE The idata, odata, and/or direction
parameter is not valid.

CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

PG-00000-003_V2.3
NVIDIA

CUDA CUFFT Library

Function cufftExecD2Z()

cufftResult
cufftExecD2Z(cufftHandle plan, cufftDoubleReal *idata,
cufftDoubleComplex *odata);

executes a CUFFT double-precision real-to-complex (implicitly
forward) transform plan. CUFFT uses as input data the GPU memory
pointed to by the idata parameter. This function stores the non-
redundant Fourier coefficients in the odata array. If idata and odata
are the same, this method does an in-place transform (See “CUFFT
Transform Types” on page 3 for details on real data FFTs.)

Input
plan The cufftHandle object for the plan to update
idata Pointer to the double-precision real input data (in GPU memory)
to transform
odata Pointer to the double-precision complex output data (in GPU
memory)
Output

odata Contains the complex Foutier coefficients

Return Values

CUFFT_SETUP_FAILED CUFFT libraty failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE The idata and/or odata parameter is not valid.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

Function cufftExecZ2D()

cufftResult

cufftExecz2D(cufftHandle plan,
cufftDoubleComplex *idata,
cufftDoubleReal *odata);

executes a CUFFT double-precision complex-to-real (implicitly
inverse) transform plan. CUFFT uses as input data the GPU memory
pointed to by the idata parameter. The input array holds only the
non-redundant complex Fourier coefficients. This function stores the

PG-00000-003_V2.3 12
NVIDIA

CUDA

CUFFT Library

real output values in the odata array. If idata and odata are the same,
this method does an in-place transform. (See “CUFFT Transform
Types” on page 3 for details on real data FFTs.)

Input

plan The cufftHandle object for the plan to update

idata Pointer to the double-precision complex input data (in GPU
memory) to transform

odata Pointer to the double-precision real output data (in GPU memory)

Output

odata Contains the real-valued output data

Return Values

CUFFT_SETUP_FAILED CUFFT library failed to initialize.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE The idata and/or odata parameter is not valid.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on GPU.
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

Accuracy and Performance

13

The CUFFT library implements several FFT algorithms, each having
different performance and accuracy. The best performance paths
correspond to transform sizes that meet two criteria:

1. Fitin CUDA's shared memory
2. Are powers of a single factor (for example, powers of two)

These transforms are also the most accurate due to the numeric
stability of the chosen FFT algorithm. For transform sizes that meet the
first criterion but not second, CUFFT uses a more general mixed-radix
FFT algorithm that is usually slower and less numerically accurate.
Therefore, if possible it is best to use sizes that are powers of two or
four, or powers of other small primes (such as, three, five, or seven). In
addition, the power-of-two FFT algorithm in CUFFT makes maximum
use of shared memory by blocking sub-transforms for signals that do
not meet the first criterion.

PG-00000-003_V2.3
NVIDIA

CUDA

CUFFT Library

For transform sizes that do not meet either criteria above, CUFFT uses
an out-of-place, mixed-radix algorithm that stores all intermediate
results in CUDA's global GPU memory. Although this algorithm uses
optimized transform modules for many factors, it has generally lower
performance because global memory has less bandwidth than shared
memory. The one exception is large 1D transforms, where CUFFT uses
a distributed algorithm that performs a 1D FFT using a 2D FFT, where
the dimensions of the 2D transform are factors of the 1D size. This path
attempts to utilize the faster transforms mentioned above even if the
signal size is too large to fit in CUDA's shared memory.

Many FFT algorithms for real data exploit the conjugate symmetry
property to reduce computation and memory cost by roughly half.
However, CUFFT does not implement any specialized algorithms for
real data, and so there is no direct performance benefit to using real-to-
complex (or complex-to-real) plans instead of complex-to-complex.
For this release, the real data API exists primarily for convenience, so
that users do not have to build interleaved complex data from a real
data source before using the library. For 1D transforms, the
performance for real data will either match or be less than the complex
equivalent (due to an extra copy in come cases). However, there is
usually a performance benefit to using real data for 2D and 3D FFTs,
since all transforms but the last dimension operate on roughly half the
logical signal size

PG-00000-003_V2.3 14

NVIDIA

CUDA CUFFT Library

CUFFT Code Examples

This section provides simple examples of 1D, 2D, and 3D complex and
real data transforms that use the CUFFT to perform forward and
inverse FFTs.

1D Complex-to-Complex Transforms

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);

/* Create a 1D FFT plan. */
cufftPlanld(&plan, NX, CUFFT_C2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_INVERSE);

/* Note:
(1) Divide by number of elements in data set to get back original data

(2) Ildentical pointers to input and output arrays implies in-place
transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree(data);

15 PG-00000-003_V2.3
NVIDIA

CUDA CUFFT Library

1D Real-to-Complex Transforms

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*(NX/2+1)*BATCH);

/* Create a 1D FFT plan. */
cufftPlanld(&plan, NX, CUFFT_R2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecR2C(plan, (cufftReal*)data, data);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree(data);

2D Complex-to-Complex Transforms

#define NX 256
#define NY 128

cufftHandle plan;

cufftComplex *idata, *odata;

cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);

/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX, NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Note: idata !'= odata indicates an out-of-place transformation
to CUFFT at execution time. */

PG-00000-003_V2.3 16
NVIDIA

CUDA CUFFT Library

/* Inverse transform the signal in place */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree(idata); cudaFree(odata);

2D Complex-to-Real Transforms

#define NX 256
#define NY 128

cufftHandle plan;

cufftComplex *idata;

cufftReal *odata;

cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftReal)*NX*NY);

/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX, NY, CUFFT_C2R);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2R(plan, idata, odata);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree(idata); cudaFree(odata);

17 PG-00000-003_V2.3
NVIDIA

CUDA CUFFT Library

3D Complex-to-Complex Transforms

#define NX 64
#define NY 64
#define NZ 128

cufftHandle plan;

cufftComplex *datal, *data2;

cudaMalloc((void**)&datal, sizeof(cufftComplex)*NX*NY*NZ);
cudaMalloc((void**)&data2, sizeof(cufftComplex)*NX*NY*NZ);

/* Create a 3D FFT plan. */
cufftPlan3d(&plan, NX, NY, NZ, CUFFT_C2C);

/* Transform the first signal in place. */
cufftExecC2C(plan, datal, datal, CUFFT_FORWARD);

/* Transform the second signal using the same plan. */
cufftExecC2C(plan, data2, data2, CUFFT_FORWARD);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);
cudaFree(datal); cudaFree(data2?);

PG-00000-003_V2.3 18
NVIDIA

	CUFFT Library
	Table of Contents

	CUFFT Library
	CUFFT Types and Definitions
	Type cufftHandle
	Type cufftResult
	Type cufftReal
	Type cufftDoubleReal
	Type cufftComplex
	Type cufftDoubleComplex
	CUFFT Transform Types
	CUFFT Transform Directions

	CUFFT API Functions
	Function cufftPlan1d()
	Function cufftPlan2d()
	Function cufftPlan3d()
	Function cufftDestroy()
	Function cufftExecC2C()
	Function cufftExecR2C()
	Function cufftExecC2R()
	Function cufftExecZ2Z()
	Function cufftExecD2Z()
	Function cufftExecZ2D()

	Accuracy and Performance
	CUFFT Code Examples
	1D Complex-to-Complex Transforms
	1D Real-to-Complex Transforms
	2D Complex-to-Complex Transforms
	2D Complex-to-Real Transforms
	3D Complex-to-Complex Transforms

