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Polarimetry with Phased Array Antennas:
Theoretical Framework and Definitions
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Abstract—For phased array receivers, the accuracy
with which the polarization state of a received signal
can be measured depends on the antenna configuration,
array calibration process, and beamforming algorithms.
A signal and noise model for a dual-polarized array is
developed and related to standard polarimetric antenna
figures of merit, and the ideal polarimetrically calibrated,
maximum-sensitivity beamforming solution for a dual-
polarized phased array feed is derived. A practical polari-
metric beamformer solution that does not require exact
knowledge of the array polarimetric response is shown
to be equivalent to the optimal solution in the sense that
when the practical beamformers are calibrated, the optimal
solution is obtained. To provide a rough initial polarimetric
calibration for the practical beamformer solution, an ap-
proximate single-source polarimetric calibration method is
developed. The modeled instrumental polarization error for
a dipole phased array feed with the practical beamformer
solution and single-source polarimetric calibration was -10
dB or lower over the array field of view for elements with
alignments perturbed by random rotations with 5 degree
standard deviation.

Index Terms—Phased array antennas, polarimetry, array
signal processing.

I. INTRODUCTION

The radio astronomy community is currently develop-
ing polarimetric aperture arrays and phased array feeds
(PAFs) for large reflectors [1–4]. Accurate polarization
state measurements for observed sources is critical to
the science goals for current and planned phased array
instruments. With a traditional waveguide feed, the po-
larization properties of the receiver are fixed at the time
of manufacture and unwanted instrumental polarization
can be calibrated by observing sources with known
polarization parameters. For a phased array receiver, the
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polarimetric properties of each formed beam or image
pixel can be adjusted on the fly by changing beamformer
coefficients. If array output correlations are computed
and stored, one set of observation data can be processed
with multiple sets of beamformer coefficients tuned
to optimize sensitivity, sidelobe level, or polarimetric
accuracy. Exploiting this flexibility and achieving best
possible system performance requires the development
of a theory for polarimetric phased arrays, including
figures of merit, optimal beamformer solutions, and
practical calibration strategies.

Key questions that must be answered by this theory
include the following:

• How do astronomical performance criteria relate
to the standard IEEE definitions for polarimetric
antennas?

• What beamforming algorithm will simultaneously
optimize for high SNR and polarimetric accuracy?

• Which requirements should be set on the antenna
array and beamformer design to achieve optimal
performance?

• How can a polarimetric array be accurately and
efficiently calibrated?

This paper will consider the first two questions in detail
and addresses the third empirically through a numerical
study. An approximate single-source calibration scheme
is presented to address the fourth issue. A full treatment
of polarimetric calibration is beyond the scope of this
paper and will be addressed in future work.

The first question arises because antenna engineers
assess the polarimetric performance of antenna systems
in terms of the axial ratio, cross-polarization discrim-
ination (XPD), and cross-polarization isolation (XPI),
while astronomers judge instrument performance and
express system requirements in terms of Stokes param-
eters [5, 6]. Another challenge is that the standard IEEE
definitions of the axial ratio, XPD and XPI have been
established for single port systems, and these figures of
merit must be extended to phased array systems that
are capable of forming multiple dual-polarized beams
simultaneously. Astronomical antenna applications also
have unique constraints because radiation in terrestrial
communication systems is typically highly polarized,
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whereas astronomical sources have a small but important
polarized component of a few percent or less relative to
the total power flux density.

The starting point for answering these questions is
the development of a signal and noise model for a
polarimetric phased array receiver. This is accomplished
in Sec. II. The treatment leads to the general problem of
beamforming for rank-two signals and the concept of a
polarimetric array beam pair. In Sec. III, the standard
IEEE definitions for polarimetric figures of merit are
related to the beam pair Jones matrix. In Sec. IV, the op-
timal beam pair solution is derived for a perfectly known
instrument, and a practical beamforming method based
on signal correlation matrix eigenvectors is considered
for partially characterized polarimeters. An important
result is that if sample estimation error (the error incurred
by computing the array output correlation matrix from
a finite number of voltage samples) is neglected, the
practical eigenvector max-SNR method is equivalent to
the optimal solution when polarimetrically calibrated.
The performance of practical beamformers are compared
to the ideal solution using a numerical model in Sec. V.

Voltage and field quantities are phasors with the ejωt

convention. An overbar (E) is used to denote three-
dimensional field and position vectors, whereas vectors
of voltages are typeset in boldface (v). The superscript
∗ designates the complex conjugate and H the conjugate
transpose. 〈 · 〉 denotes expectation over time.

II. POLARIMETRIC PHASED ARRAY MODEL

The purpose of a radio polarimeter is to measure the
polarization properties of an incident electromagnetic
wave as a function of the angle of arrival. Figure 1
illustrates an N -element polarimetric beamforming array
comprised of two groups of antenna elements with
nominally orthogonal polarization. The antenna system
is assumed to be illuminated by a point source radiat-
ing partially-polarized fields. The electric field intensity
vector at the point r radiated by such a source can be
approximated in the neighborhood of the receiver by the
incident plane wave

E (r, t) = [Eu (t) û + Ev (t) v̂] ejk·r (1)

where û and v̂ are orthogonal unit vectors according to
one of Ludwig’s polarization definitions relative to the
coordinate system of the array [7], and k is the wave
vector corresponding to the angle of arrival. Since û and
v̂ are defined with respect to the coordinate system of the
array, we are neglecting in this treatment a rotation of
the polarization state from the astronomical coordinate
system on the sky to the coordinate system of the array.

In the following theoretical development, we will con-
sider the polarimetric calibration problem for one beam-

· · ·· · ·
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E(r, t) = Eu(r, t)û + Ev(r, t)v̂

Fig. 1. A radio polarimeter comprised of a dual-polarized actively
beamformed receiving antenna array.

steering direction. The calibration process must be ap-
plied to every formed phased array beam for each desired
beam direction, as the numerical results make clear. Ar-
ray calibration is accomplished with point sources, rather
than extended sources, so all signal response quantities
are assumed to arise from a point source. For an imaging
array, each pixel represents a different beam steering
direction and set of array beamforming coefficients. The
figures of merit and beamforming procedures developed
in this paper apply independently to each image pixel.

The source of interest is assumed to be a point source,
and all results for figures of merit are calculated at
the beam center. Since extended astronomical sources
are common, beam polarization patterns are important,
but this aspect of phased array polarimetry will be
considered in future work.

The antenna output signals are amplified to form
the N -element output voltage vector v, which is sub-
sequently combined into the output voltages v1 and
v2 using the beamformer weight vectors w1 and w2

respectively, each of which is a column vector of size
N × 1. Together, w1 and w2 constitute a polarimetric
beam pair for a given sky pointing direction1.

The electric field components Eu (r, t) and Ev (r, t)
are complex random processes in the phasor or complex
baseband representation. The polarization state of the
plane wave is determined by the covariance matrix of

1In the less general bi-scalar method, w1 and w2 are weight vectors
of size (N/2 × 1) and are only associated to the x- and y-oriented
antenna elements, respectively.
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the two field components, which is the 2× 2 Hermitian
matrix

RE =
[ 〈|Eu|2〉 〈EuE∗

v 〉
〈E∗

uEv〉 〈|Ev|2〉
]

. (2)

The covariance matrix has two real and one complex
degrees of freedom, or four real degrees of freedom. The
time-average power flux density of the incident wave is

Ssig =
〈|Eu|2〉+ 〈|Ev|2〉

2η0
=

1
2η0

tr[RE ] (3)

where η0 is the characteristic impedance of free space
and tr is the matrix trace operation.

Some authors rearrange the covariance matrix to form
the coherency vector [6]

c = vec
(
R∗

E

)
=




〈|Eu|2〉
〈EuE∗

v 〉
〈E∗

uEv〉
〈|Ev|2〉


 (4)

where vec(R∗
E

) is the vector obtained by stacking the
columns of R∗

E
. The relative magnitudes and phases of

these quantities determine the degree of polarization and
the polarization state of the polarized part of the wave.

A. Array Signal Response

With reference to Fig. 1, we will model the antenna
array output signals {v1, v2} in terms of the voltage re-
sponses of the array to the unit intensity, time-harmonic,
linearly polarized waves

Eu = ûejk·r =⇒ vu (5a)

Ev = v̂ejk·r =⇒ vv (5b)

where vu and vv are vectors of the respective voltages
induced by the two waves at the array receiver outputs
before beamforming. Even though E

H

u Ev = 0, vu and
vv may not be orthogonal due to possible non-ideal
polarimetric response of the receiver.

The voltage responses vu and vv are not exactly
known in practice, but are useful in developing a system
model for a beamforming phased array antenna. We
will show in Section IV-A that if vu and vv were
known, the beam pair w1, w2 can be exactly calibrated
polarimetrically. Experimental procedures for calibrating
the array in the case that vu and vv are not known are
discussed in Section IV-B.

Since û and v̂ are orthogonal, it follows by linearity
that for an arbitrarily polarized wave, the array signal
voltage response vector can be written using vu and vv

as
vs = Euvu + Evvv (6)

The N×N array output signal voltage covariance matrix
is

Rs = 〈vsvH
s 〉 = vuvH

u 〈|Eu|2〉+ vuvH
v 〈EuE∗

v 〉
+ vvvH

u 〈E∗
uEv〉+ vvvH

v 〈|Ev|2〉 (7)

which is of rank one for a fully polarized wave and of
rank two for a partially polarized or unpolarized incident
wave. Upon introducing the N × 2 matrix

V = [vu vv] (8)

we can write (7) in the more compact form

Rs = VREVH (9)

Assuming that the phased array system noise can be
characterized by the noise covariance matrix Rn, the
complete array output voltage covariance matrix can be
described as

Rv = Rs + Rn (10)

This expression provides a signal and noise model for
a polarimetric array. The precise form of the noise
response Rn for an array receiver is not important here,
but is considered in detail in [8–10].

B. Beam Pair Signal and Noise Response

After beamforming, the two output voltages obtained
with the beamformer pair are (cf. Fig. 1)

v1 = wH
1 v (11a)

v2 = wH
2 v. (11b)

The covariance matrix Ro of the two beam outputs is

Ro =
〈[

v1

v2

] [
v∗1 v∗2

]〉
=

[ 〈|v1|2〉 〈v1v
∗
2〉

〈v2v
∗
1〉 〈|v2|2〉

]
.

(12)
In terms of the array signal and noise covariance matri-
ces, the beam pair output covariance matrix is

Ro =
[

wH
1 (Rs + Rn)w1 wH

1 (Rs + Rn)w2

wH
2 (Rs + Rn)w1 wH

2 (Rs + Rn)w2

]
.

(13)
Introducing the N × 2 vector

W = [w1 w2] (14)

leads to the more compact expression

Ro = Ro,s + Ro,n (15)

where

Ro,s = WHVREVHW (16a)

Ro,n = WHRnW. (16b)

This result provides a signal and noise model for the
polarimetric beam pair W.
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III. POLARIMETRIC DEFINITIONS

In this section, we consider the relationship between
IEEE definitions for polarimetric figures of merit and the
Jones and Mueller matrix formulations that are common
in radio astronomy and remote sensing. We also consider
the problem of quantifying the joint sensitivity of a
polarimetric beam pair.

A. IEEE Definitions for Single Port Antennas

The IEEE definitions for polarization terms for single
port antennas are as follows [5]:

Cross-polarization discrimination (XPD) is the ratio
of the power level at the output of a receiving antenna,
nominally co-polarized with the transmitting antenna,
to the output of a receiving antenna of the same gain
but nominally orthogonally polarized to the transmitting
antenna.

Cross-polarization isolation (XPI) is the ratio of the
wanted power to the unwanted power in the same re-
ceiver channel when the transmitting antenna is radiating
nominally orthogonally polarized signals at the same
frequency and power level.

Other figures of merit such as axial ratio and intrinsic
cross-polarization ratio [11] can be applied to polarimet-
ric phased arrays but will not be considered further in
this paper.

B. Definitions for Phased Array Antennas

With reference to the polarimetric phased array model
developed in Sec. II, the signal response of an array
antenna to co- and cross-polarized incident fields Eu and
Ev is described by the two beamformer output voltages

[
v1u

v2u

]
=

[
wH

1 vu

wH
2 vu

]
(17)

and [
v1v

v2v

]
=

[
wH

1 vv

wH
2 vv

]
(18)

where vu and vv are the output voltage vectors of
the receiving elements in response to pure Eu and Ev

signals. The weight vectors w1 and w2 of the two
beamformers are assumed to be defined such that they
optimally receive or at least approximate the optimal
reception of Eu and Ev , respectively, according to some
specified criterion to be discussed in Sec. IV. This
implies that the polarizations of the two formed beams
are nominally aligned with the û and v̂ directions. While
û and v̂ are defined as real vectors in (1), the definitions
in this section hold for any pair of waves Eu and Ev

with orthogonal polarizations, whether linear, circular, or
elliptical.

Ideally, one expects the two output voltage vectors
to be directly proportional to Eu and Ev , but this

may not hold due to polarization leakage caused by
imperfections in the element geometry or mutual cou-
pling between the array elements, in particular when the
antennas are placed in a finite array exhibiting strong
truncation effects. In the latter case, the polarization
characteristics of the embedded element patterns differ
significantly from each other. The degree of polarization
leakage is dependent not only on the array geometry
and mechanical construction, but also on the values of
the beamformer coefficients.

To quantify the beam-dependent polarization leakage,
we extend the standard definitions in Sec. III-A as
follows:

Cross-polarization discrimination is defined as the
ratio of powers received at the beamformer outputs 1
and 2 due to the same incident field, i.e. Eu or Ev:

XPDu =
|v1u|2
|v2u|2

=
wH

1 vuvH
u w1

wH
2 vuvH

u w2
=

wH
1 Ruuw1

wH
2 Ruuw2

(19)

XPDv =
|v2v|2
|v1v|2

=
wH

2 vvvH
v w2

wH
1 vvvH

v w1
=

wH
2 Rvvw2

wH
1 Rvvw1

(20)

where Ruu = vuvH
u and Rvv = vvvH

v are the signal
covariance matrices in response to pure Eu and Ev

signals of unit intensity.
Cross-polarization isolation is defined as the ratio

of powers received at the same beamformer output, 1 or
2, due to orthogonally-polarized incident fields Eu and
Ev:

XPI1 =
|v1u|2
|v1v|2

=
wH

1 vuvH
u w1

wH
1 vvvH

v w1
=

wH
1 Ruuw1

wH
1 Rvvw1

(21)

XPI2 =
|v2v|2
|v2u|2

=
wH

2 vvvH
v w2

wH
2 vuvH

u w2
=

wH
2 Rvvw2

wH
2 Ruuw2

(22)

C. Jones Matrix Formulation
Unlike radio communications, for which antennas are

fabricated to meet a fixed polarization purity require-
ment, applications such as radio astronomy and remote
sensing that rely on accurate measurement of wave
polarization states also require operational polarimetric
calibration. When modeling system effects that con-
tribute to the measured wave polarization state, it is
convenient to use the Jones matrix formulation [12]. The
Jones formulation allows matrix terms for various system
components to be chained together into an overall Jones
matrix that must be modeled or measured in order to
infer the incident wave polarization state.

For a phased array, each polarimetric beam pair has
an associated Jones matrix. The general relationship
between the beam outputs and the incident electric field
intensity vector is[

v1

v2

]
=

[
J11 J12

J21 J22

] [
Eu

Ev

]
(23)
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where the two by two matrix on the right side of
this equation is the beam pair Jones matrix, which we
will denote in the following as J. Using the notation
developed above, for an array this relationship becomes

[
v1

v2

]
=

[
wH

1 (vuEu + vvEv)
wH

2 (vuEu + vvEv)

]

=
[
wH

1 vu wH
1 vv

wH
2 vu wH

2 vv

] [
Eu

Ev

]
(24)

The Jones matrix can be identified as

J =
[
wH

1 vu wH
1 vv

wH
2 vu wH

2 vv

]
= WHV (25)

where

W =
[
w1 w2

]
, and V =

[
vu vv

]
. (26)

Using this result, the beam pair output signal voltage
covariance matrix (16a) can be written as

Ro,s = JREJH (27)

The goal of polarimetric calibration is to transform a
given beam pair W to a new beam pair W′ for which
the radiation patterns are steered to the same angle of
arrival as the original beam pair but having Jones matrix
J′ as close as possible to the identity matrix. If J′ ' I,
the cross-polarization figures of merit are large in value.
If the initial Jones matrix J = WHV is known, it can
be readily seen that the beam pair

W′ = WJH−1
(28)

is ideally polarimetrically calibrated and the realized
Jones matrix is J′ = W′HV = I.

If the beam pair output signal coveriance matrix Ro,s

is measured for one signal with a known polarization
state RE , the relationship (27) does not uniquely fix the
beam pair Jones matrix. Given known input and output
polarization parameters, by substitution it can be shown
that the general solution to (27) has the form

J = R1/2
o,s UR−1/2

E
(29)

where U is an arbitrary unitary matrix. This shows that
with only a single calibrator source, there remains a
2×2 unitary degree of freedom in the Jones matrix. The
physical interpretation of the unitary degree of freedom
is discussed in [6, 13]. The ambiguity can be removed
using knowledge of the nominal element polarizations
(see Section IV-C), measurements of additional cali-
brator sources, or correlation with a second calibrated
polarimetric antenna.

In terms of the elements of the Jones matrix, the cross-
polarization figures of merit (19)–(22) are [11]

XPDu =
|J11|2
|J21|2

XPDv =
|J22|2
|J12|2

(30a)

XPI1 =
|J11|2
|J12|2

XPI2 =
|J22|2
|J21|2

(30b)

These expressions show that the standard antenna polar-
ization figures of merit are measures of the magnitudes
of the off-diagonal elements J12 and J21 relative to the
diagonal elements J11 and J22.

D. Mueller Matrix Formulation

While Jones matrices operate in the voltage phasor
domain, 4×4 Mueller matrices represent transformations
on wave polarization states in the correlation or Stokes
parameter domain. Since the Mueller matrix formulation
is commonly used in the astronomical literature, the
treatment will be rehearsed here and placed into the
mathematical framework developed in earlier sections.

For a signal characterized by the field coveriance
matrix (2), the Stokes vector containing the four Stokes
parameters is defined as [14, pp. 97–98]

S =




I
Q
U
V


 =




〈|Eu|2〉+ 〈|Ev|2〉
〈|Eu|2〉 − 〈|Ev|2〉

2Re [〈EuE∗
v 〉]

2 Im [〈EuE∗
v 〉]


 (31)

Some authors define the Stokes parameters with a factor
of 1/η0, where η0 is the intrinsic impedance of space, so
that the Stokes parameters have units of power density
(W/m2).

It can be shown that [15, p. 29]

Q2 + U2 + V 2 ≤ I2. (32)

The degree of polarization is

m =

√
Q2 + U2 + V 2

I
. (33)

For an unpolarized wave, Q = U = V = 0.
A Stokes polarimeter can be represented by the rela-

tionship
So = MSi (34)

where Si is a vector of the Stokes parameters of the
incident wave given by (31) and M is the Mueller matrix
of the system. The vector of Stokes parameters referred
to the beam output voltages is

So =




〈|v1|2〉+ 〈|v2|2〉
〈|v1|2〉 − 〈|v2|2〉

2 Re 〈v1v
∗
2〉

2 Im 〈v1v
∗
2〉


 (35)
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The beam pair is said to be polarimetrically calibrated
if the Stokes parameters of the source, (31), and the
measured Stokes parameters, (35), are identical, apart
from a constant gain factor. In the following, we will
include the gain calibration with polarimetric calibration,
and consider the system to be polarimetrically calibrated
when M = I.

The Mueller and Jones matrix formulations are con-
nected by known formulas, which we will review here.
Stokes parameters are related to the coherency vector (4)
by

Si = Tc (36)

where

T =




1 0 0 1
1 0 0 −1
0 1 1 0
0 −j j 0


 (37)

The inverse of this transformation matrix is

T−1 = 1
2




1 1 0 0
0 0 1 j
0 0 1 −j
1 −1 0 0


 (38)

Using this relationship for the incident wave and the
beam output voltages,

co = T−1MTci (39)

Using the properties of the Kronecker product, (27) can
be rearranged in the form

J∗ ⊗ J vec (RE) = vec (Ro,s) (40)

In view of (4), this becomes

J⊗ J∗ci = co (41)

Combining these results shows that the system Mueller
matrix is related to the Jones matrix by (see also [16])

M = T(J⊗ J∗)T−1 (42)

In the present context, the Jones matrix J(w1,w2) is
weight dependent, so that, by using (25) along with the
properties of the Kronecker product,

M = T(WHV)⊗ (WT V∗)T−1

= T(WH ⊗WT )(V ⊗V∗)T−1. (43)

If the polarimeter is ideally calibrated, then J = I2×2,
M = I4×4, and So = Si.

For a realistic system configured as a Stokes polarime-
ter, polarimetric calibration means measuring the beam
pair Mueller matrix M and using that information to
transform the weight pair W, or in general adapt the
beam pair covariance matrix Ro, such that the effective
Mueller matrix becomes proportional to the identity
matrix.

Polarimetric accuracy can be quantified by the error
in the measured Stokes parameters for a given source or
by the deviation of the Mueller matrix from the identity.
The relative RMS Stokes error is

ES =
‖∆S‖

I
=

√
(∆I)2 + (∆Q)2 + (∆U)2 + (∆V )2

I
(44)

This metric can be applied to computed Stokes parame-
ters before the instrument is polarimetrically calibrated,
to determine the raw or uncalibrated Stokes error, or
it can be applied after calibration, to assess the perfor-
mance of both the calibration procedure and the native
instrumental polarization properties.

As with the Jones formulation, source-independent
measures of polarimetric accuracy are also desirable. By
the definition of the induced operator norm, we have the
bound

‖∆S‖
‖Si‖ =

‖(M− I)Si‖
‖Si‖ ≤ ‖M− I‖ (45)

For weakly polarized sources, ‖Si‖ ' I , and we have
approximately

ES ≤ ‖M− I‖ (46)

The quantity
EM = ‖M− I‖ (47)

therefore is an approximate upper bound on the relative
RMS Stokes error. EM might be referred to as the Stokes
instrumental polarization bound. This bound is derived
for the case of a noise-free system. Since estimation error
due to noise can be reduced to arbitrarily low levels
by integration, (47) is adequate for many purposes, in-
cluding antenna design optimization, but when analyzing
astronomical observation data in practice, the additional
effect of noise on polarimetric accuracy should be con-
sidered.

E. Beam Pair Sensitivity

The above treatment has considered traditional po-
larimetric formulations for the case of a phased array
antenna. Another important aspect of beamforming for
polarimetric arrays is that the beamformer coefficients
control the beam output SNR and antenna sensitivity.
For one beam, it is straightforward to determine the
beamformer coefficients that maximize sensitivity given
a knowledge of the array signal and noise responses.
For a beam pair, the sensitivity of both beams should
ideally be as high as possible. In particular, the beam
sensitivities of an uncalibrated beam pair W and the
polarimetrically calibrated beam pair W′ are in general
different, and there are many possible polarimetrically
calibrated beam pairs that have lower sensitivity than the
classical maximum-SNR beamformer solution. There-
fore, it is of interest to characterize the sensitivity of both
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outputs of a beam pair with a metric that is independent
of the beam pair polarimetric calibration.

For one beam w, the sensitivity is

Ae

Tsys
=

kbB

Ssig

wHRsw
wHRnw

(48)

where B is the system noise equivalent bandwidth, kb is
Boltzmann’s constant, and Ssig is the power flux density
of the incident wave in W/m2. As required by the defi-
nition of effective area, the incident wave is polarization
matched with the polarization of the beam. The signal
correlation matrix for a time-harmonic incident wave can
be expressed as

Rs = VEEHVH (49)

where E = [Eu Ev]T . The polarization of the incident
wave is matched to the beam when wHRsw is maxi-
mized, which occurs for the incident field state

E =

√
2η0Ssig

wHVVHw
VHw (50)

where the scale factor follows from (3). Using these
results in (48) leads to

Ae

Tsys
= 2η0kbB

wHVVHw
wHRnw

(51)

This same result can be obtained from (48) for an
unpolarized wave (RE = η0SsigI) with Ssig in the
leading scale factor replaced by half the power flux
density of the unpolarized wave.

To define the beam pair sensitivity, we seek a figure of
merit that is independent of the beam pair polarimetric
calibration. This means finding bounds on the beam
sensitivity (48) with w an arbitrary linear combination
of w1 and w2. Using (51), the sensitivity is

Ae

Tsys
= 2η0kbB

aHWHVVHWa
aHWHRnWa

(52)

where a = [a1 a2]T is an arbitrary vector. With a′ =
C−1/2VHWa, where

C = VHW(WHRnW)−1WHV (53)

(52) becomes

Ae

Tsys
= 2η0kbB

a′HCa′

a′Ha′
(54)

This shows that the ratio of quadratic forms in (52) lies
within the field of values of the matrix C [17]. Since
C is Hermitian, the eigenvalues are real and the field of
values is an interval on the real line. It follows that for
any beamformer w in the subspace spanned by the beam
pair the sensitivity is bounded by

2η0kbBλmin ≤ Ae

Tsys
≤ 2η0kbBλmax (55)

where λmin and λmax are the eigenvalues of C. By
substituting W′ = WA, where A is an arbitrary
invertible 2 × 2 matrix, it can be seen that the matrix
C is independent of linear transformation of the beam
subspace and hence of the beam pair polarimetric cali-
bration.

Since the response V to orthogonal polarized waves
is not directly available for a phased array in practice,
it is of interest to express the sensitivity bound in terms
of measurable array output quantities. In the Appendix
it is shown that the sensitivity bound can be expressed
in the form

min
Sin

kbB

Ssig
tr[R−1

o,nRo,s] ≤ Ae

Tsys
≤ max

Sin

kbB

Ssig
tr[R−1

o,nRo,s]

(56)
The calibration-independence of this form of the bound
follows from the properties of the matrix trace.

We will refer to two beam pairs W and W′ as
sensitivity equivalent if they lead to the same upper
and lower sensitivity bounds in (55) or (56). By the
above derivation, if the beam pairs are related by a linear
transformation, they are sensitivity equivalent, and a
beam pair is sensitivity equivalent to its polarimetrically
calibrated counterpart WJH−1

. Finally, we observe that
a polarimetrically calibrated beam pair does not neces-
sarily achieve the upper bound in (55). The degree to
which polarimetric calibration reduces beam sensitivity
will be studied empirically in Section V.

IV. POLARIMETRIC BEAMFORMING

For a polarimetric phased array, calibration has two
aspects:

1) determining the beamformer pair W so that sensi-
tivity and other beam figures of merit are optimal,
and;

2) determining the beam pair Jones matrix or the
Mueller matrix so that the incident wave polar-
ization state can be inferred from the beam pair
outputs.

Combining 1) and 2) enables high sensitivity polarime-
try. Beamformer coefficients applied to a phased ar-
ray can be updated dynamically to accomplish various
goals, such as sensitivity maximization as the noise
environment changes, interference mitigation, or beam
pattern sidelobe control. Consequently, the polarization
properties of the array beam outputs are not necessarily
fixed. This introduces the possibility of combining the
beamformer optimization and polarimetric calibration
steps, so that the beam pair satisfies a specified set
optimality criteria and also is polarimetrically calibrated
with both the Jones and Mueller matrices approximately
equal to identity matrices.

We will consider the ideal case of a perfectly known
system, in order to understand the ultimate performance
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limits of a given beam pair, as well as the practical case
for which polarization properties of a beam pair must
be calibrated empirically using observations of sources
with known polarization parameters. To avoid sacrificing
observation time for polarimetric calibration, one can
observe with non-polarimetrically calibrated beam pairs
having imperfect polarization discrimination. Therefore,
it is important to find an approach for obtaining best pos-
sible polarimetric beam pairs using the single-source cal-
ibration data required for non-polarimetric array beam-
forming, and to characterize the polarization purity of
beam pairs that are obtained without additional effort at
polarimetric calibration.

A. Optimal Beamforming for a Perfectly Known System

Any beam pair that responds to two non-colinear
incident polarizations can be polarimetrically calibrated,
but the resulting beams may have poor sensitivity, which
implies a low SNR and inaccurate measured Stokes
parameters for a given integration time. We will show
that there is a unique polarimetrically calibrated beam
pair that minimizes estimation error in measured Stokes
parameters for a point source at a given angle of arrival.

Measured Stokes parameters are a linear combination
of the elements of a sample estimate of the 2 × 2 co-
variance matrix Ro,s given by (16a). We will denote the
sample estimated matrix for a given integration length
K as R̂o,s. With the standard radiometric detection
technique, R̂o,s is the difference between an on-source
measurement and off-source measurement of the beam
pair output coveriance matrix:

R̂o,on = JR̂EJH + WHR̂n,onW (57a)

R̂o,off = WHR̂n,offW (57b)

where R̂ signifies a sample-estimated coveriance matrix.
The difference is

R̂o,diff = R̂o,on − R̂o,off =

JR̂EJH + WH(R̂n,on − R̂n,off)W (58)

After polarimetrically calibrating the beam pair outputs,
the output covariance matrix R̂o,cal becomes

R̂o,cal = J−1R̂o,diffJH−1
=

R̂E + J−1WH(R̂n,on − R̂n,off)WJH−1

︸ ︷︷ ︸
Ên

(59)

This is the same measurement equation that would be
obtained with (58) subject to the calibrated beam pair

W′ = WJH−1
, so that J′ = W′HV = I (60)

Therefore, if Stokes parameters are computed by ap-
plying the beam pair inverse Jones matrix J−1 to the

polarization parameters obtained from an uncalibrated
beam pair W, the measurement error due to system noise
can be analyzed as if the beam pair were replaced by a
polarimetrically calibrated beam pair.

The goal is to find the polarimetrically calibrated beam
pair that minimizes the estimation error in (59), which
we will write with (60) as

Ên = W′H(R̂n,on − R̂n,off)W′ (61)

The matrix R̂n is described stochastically by the Wishart
distribution [18], which means that Ên is the difference
of two identically distributed Wishart random matrices.
The mean of Ên is the zero matrix. In the low SNR
limit, the variance of the entries of Ên is

var(Ên,kl) =
2
P

Ro,n,kkRo,n,ll (62)

where P is the number of voltage samples that are
averaged to produce R̂o,on and R̂o,off . This result shows
that in order to minimize estimation error in the Stokes
parameters, the diagonal elements of the 2 × 2 beam pair
output noise correlation matrix Ro,n must be minimized.

This consideration reduces the polarimetric beam-
former calibration problem to the joint constrained min-
imization problem

argmin
w1

wH
1 Rnw1, argmin

w2

wH
2 Rnw2 (63)

subject to J = WHV = I (64)

Since Rn is positive definite, we can add the two ob-
jective functions and recast the constrained minimization
problem in the form

argmin
W

tr(WHRnW), subject to WHV = I (65)

The constrained optimization problem can be solved
by setting to zero the matrix derivative

∇
WH tr

[
WHRnW − (WHV − I)Λ

]
= 0 (66)

where Λ is a matrix of Lagrange multipliers, which will
be chosen to satisfy the constraint in (64). Evaluating
the derivative leads to

RnW −VΛ = 0 (67)

or
W = R−1

n VΛ (68)

Using the constraint WHV = I, and solving for Λ, we
find that

ΛHVHR−1
n V = I (69)

from which it follows that

ΛH = Λ = (VHR−1
n V)−1. (70)
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The solution to the optimization problem is found by
substituting (70) in (68) to yield

Wopt = R−1
n V(VHR−1

n V)−1. (71)

This pair of beamformer weight vectors minimizes the
output system noise power while constrained to be
polarimetrically calibrated with respect to a source with
a given angle of arrival.

The optimal solution is related to a simple rank-
two generalization of the classical maximum-SNR beam-
former [19]:

WmaxSNR = R−1
n V (72)

This beam pair realizes two maximum sensitivity
beamformer weight vectors, with the Jones matrix
VHR−1

n V = VHWmaxSNR = JH
maxSNR. The optimal

beamformer solution (71) can be written as

Wopt = WmaxSNRJH −1
maxSNR (73)

which shows that the beam pair WmaxSNR is not
in general polarimetrically calibrated but is sensitivity
equivalent to the optimal beam pair.

B. Practical Polarimetric Array Calibration and the
Eigenvector Method

In practice, the voltage response matrix V is difficult
to measure for a PAF on a reflector antenna, since ideal,
orthogonally polarized astronomical sources are unavail-
able. A practical polarimetric array calibration procedure
using observations of unpolarized and partially polarized
sources is needed.

For a dual-polarized array, neglecting estimation error,
the signal covariance matrix Rs is of rank two for an
unpolarized source. The latter is readily concluded from
(9) by taking RE = I, so that

Rs = VREVH
∣∣
RE=I

= vuvH
u + vvvH

v (74)

which is a sum of two rank-one matrices. The eigenval-
ues and eigenvectors of Rs are defined by

Rsv = λv (75)

Neglecting estimation error, two of the eigenvalues are
nonzero. Veidt proposed to use the two principal eigen-
vectors veig,1 and veig,2 of Rs as conjugate field match
(CFM) beamformer weights [3]. We will refer to the
beam pair

WCFM = Veig = [veig,1 veig,2] (76)

as the eigenvector CFM beamformer.
The eigenvector CFM method can be modified to

form the maximum-SNR eigenvector beamformer weight
vectors

weig,1 = R−1
n veig,1 (77a)

weig,2 = R−1
n veig,2 (77b)

This is the eigenvector max-SNR beamformer algorithm.
To compare this beamformer with the optimal solution

presented in the previous section, we note that the
voltage response vectors vu and vv must span the same
subspace as the eigenvectors veig,1 and veig,2. This
implies that

vu = A11veig,1 + A21veig,2 (78a)
vv = A12veig,1 + A22veig,2 (78b)

which is equivalent to

V = [veig,1 veig,2]
[

A11 A12

A21 A22

]
= VeigA (79)

Substitution in (71) gives

Wopt = R−1
n VeigA

(
VHR−1

n VeigA
)−1

= R−1
n Veig

(
VHR−1

n Veig

)−1
(80)

which has a similar form as (71). Upon introducing
Weig = R−1

n Veig and Jeig = WH
eigV, (80) can be

written as
Wopt = WeigJH

eig

−1
(81)

This result shows that the eigenvector max-SNR beam
pair is sensitivity equivalent to the optimal beam pair.

A modification of the above approach can be obtained
using the generalized eigenvalue form of the max-SNR
beamformer:

Rnw = λRsw (82)

Since Rs is rank two, the generalized eigenvalue prob-
lem has two nonzero eigenvalues. The corresponding
principle eigenvalues provide a maximum-SNR beam
pair. It can be easily shown that this beam pair is also
sensitivity equivalent to the optimal beam pair (71). The
same beam pair can also be obtained by using the noise
correlation matrix to pre-whiten the array output signals
and using the eigenvector CFM method with the pre-
whitened signal correlation matrix.

To summarize, we have so far five polarimetric beam-
forming algorithms:

Wopt = R−1
n V(VHR−1

n V)−1 (83a)
WmaxSNR = R−1

n V (83b)
Weig = R−1

n Veig (83c)
Rnw = λRsw → W (83d)

WCFM = Veig (83e)

The first and second beam pairs require knowledge of
the array response V to orthogonally polarized incident
waves, which is not directly available in practice. The
third, fourth, and fifth are practical beamformers in
the sense that they can be computed from measurable
signal output correlation matrices for unpolarized or
partially polarized sources. The first beam pair is exactly
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polarimetrically calibrated, but in general the others are
not.

In the absence of estimation error, all of these beam
pairs except for CFM are sensitivity equivalent. Sample
estimation error in the array output correlation matrices
may affect each beamformer algorithm differently, but
the effect of estimation error on the beamformer weights
can be driven to low levels by integrating the array output
during the calibration phase for a long period of time,
so this effect is not considered here.

C. Approximate Calibration with a Single Unpolarized
Source

The practical beamforming algorithms, (83b)–(83e),
are not polarimetrically calibrated. The eigenvectors
computed from (75) are arbitrary up to a scale factor, and
the resulting beam pair has a unitary degree of freedom
according to (29). In order to give meaning to cross-
polarization figures of merit, these degrees of freedom
must be fixed by some concrete, repeatable algorithm.

Since each beam pair can be viewed as the output
of a dual-polarized single pixel feed, any polarimetric
calibration technique that is used for conventional feeds
could be applied to calibrate the beam pair. Standard
polarimetric calibration methods require observations
of multiple sources with known Stokes parameters or
tracking a polarized source over time as it rotates relative
to the feed. Since these observations would have to be
repeated with the telescope steered so that the source
was at the center of each formed phased array beam, a
straightforward implementation of standard polarimetric
calibration could require many hours or even days.
It is possible that efficient multiple-source calibration
methods for phased arrays can be found, but a full
treatment of efficient polarimetric calibration procedures
for phased arrays is beyond the scope of this paper.

Since determining beamformer weights for a phased
array requires observations of a bright (and typically
unpolarized) source over a grid of telescope pointings
at the center of each beam [20], the goal here is to find
the best possible polarimetric calibration procedure given
this already available observation data. We will show
that a single unpolarized source observation per beam
together with the known nominal element polarization
can be used to calibrate each beam pair approximately.

Given an uncalibrated beam pair W, the first step in
the calibration procedure is to use the nominal polar-
ization of array elements to find the approximate Jones
matrix. The signal correlation matrix has the block form

Rs =
[
Rxx Rxy

Ryx Ryy

]
(84)

where x and y represent outputs from x-polarized ele-
ments and y-polarized elements, respectively. Neglecting

estimation error, the matrices

Rs,x =
[
Rxx 0
0 0

]
, Rs,y =

[
0 0
0 Ryy

]
(85)

are rank one and have principal eigenvectors v̂x and v̂y ,
respectively. These vectors are orthogonally rotated as
needed to obtain v̂u and v̂v , where the hat indicates that
these are only approximate responses to orthogonally po-
larized waves, whereas vu and vv in (5) are exact. These
vectors can be used directly as beamformer weights (the
biscalar method), but we will employ them here to obtain
the approximate Jones matrix

Ĵ = WHV̂ (86)

where V̂ = [v̂u v̂v]. This approximate Jones matrix can
be used to calibrate the beam pair to obtain

W′ = WĴH−1 (87)

Since the eigenvectors v̂x and v̂y are only determined
up to a scale factor, it remains to specify the complex
scaling of the beamformer weight vectors w′

1 and w′
2 in

the beam pair W′. Assuming that the calibrator source
is unpolarized, the magnitudes of the weight vectors can
be fixed by equalizing the responses to the calibrator
source. The overall phases of the weight vectors are set
by dividing by the phase of the largest weight vector
element, so that the largest weights are real. This leads
to the approximately calibrated beam pair

w′′
1 = w′

1

(
I/2

w′
1
HRsw′

1

)1/2 |w′1,max|
w′1,max

(88a)

w′′
2 = w′

2

(
I/2

w′
2
HRsw′

2

)1/2 |w′2,max|
w′2,max

(88b)

In practice, the phase lengths of the receiver signal paths
will be different, but this phase can be measured using
injected calibration tones or other means and incorpo-
rated in the phase constraint. The magnitude scaling in
(88) ensures that the diagonal elements of ĴĴ

H
are unity,

which through (42) implies that the element M11 of the
Mueller matrix is equal to unity.

This approximate single-source polarimetric calibra-
tion procedure is essentially equivalent to a polarimeter
that uses the nominally orthogonally polarized outputs of
a standard dual-polarized antenna (including a rotation
from the astronomical coordinate system to the coordi-
nate system of the antenna). As with a standard antenna,
coupling between phased array elements and mechanical
imperfections mean that the beam pair will not be ex-
actly calibrated, and additional observations of polarized
sources may be required to remove residual instrumental
polarization effects. Numerical results will be given in
the following section to assess the performance of this
single-source polarimetric calibration method.
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V. NUMERICAL RESULTS

The polarimetric figures of merit and beamforming
algorithms will be illustrated for a 19 × 2 element
hexagonal array of thin, lossless, x- and y-polarized
crossed dipoles spaced 0.6 λ apart and backed by a
ground plane. The phased array feeds a 20-meter re-
flector with f/D = 0.43. The open-circuited element
response is approximated using the analytical expression
for radiation by a dipole. Physical optics is used to
compute secondary fields scattering from the reflector.
The array mutual impedance matrix is approximated
by conservation of energy from the element pattern
overlap integrals. The PAF noise model includes sky
noise, spillover, and receiver noise due to low noise
amplifiers with parameters Γopt = 0, Rn = 3.4Ω, and
Tmin = 33 K. Ludwig’s first convention [7] is used to
define the u and v directions, which means that u and v
are aligned with the array x- and y-coordinate frame.

The array is calibrated using the approach of [20]
using observations of an unpolarized calibrator source
for each desired beam steering direction. Beamformer
weights are computed using the eigenvector max-SNR
and CFM algorithms described above, and polarimet-
rically calibrated using the approximate single-source
method of Section IV-C.

Results are given for two array configurations: (1)
perfectly aligned elements and (2) perturbed element
orientations with small random rotations away from
the nominal x- and y-polarizations. Since only a small
amount of power is received by elements more than one
or two wavelengths away from the focal spot associated
with a given formed beam, simulations of polarimetric
accuracy for the 19 element case are expected to be
representative of results for larger arrays.

A. Perfectly Aligned Elements

The first study is a comparison of the sensitivity
of the eigenvector max-SNR and CFM beam pairs to
the optimal solution (Figure 2). The single-source cal-
ibration procedure of Section IV-C is used with both
beamformers. The sensitivity of the max-SNR beam pair
calibrated with the single-source procedure is nearly in-
distinguishable from that of the optimal solution. For the
polarimetrically uncalibrated case, the max-SNR beam
pair sensitivity is different, but still lies within the upper
and lower bounds over arbitrary linear transformations of
the beam pair. The beam pair sensitivity bounds are given
by (55) and indicated in the figure with gray shading.
For some beam steering angles, the sensitivity of one of
the uncalibrated beams is larger than that of the optimal
beam pair. This illustrates that the calibration constraint
in (65) leads to a beam pair with sensitivity slightly
smaller than is achieved by other uncalibrated beam pairs
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Fig. 2. Beam pair sensitivity for dipole array with perfectly aligned
elements for beam steering angles from the feed boresight to 2 half
power beamwidths (HPBW) from boresight. The cut is at an azimuth
angle of 30◦ from the x-direction in the feed coordinate system. The
sensitivity bound in Equation (55) is indicated with gray shading.
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Fig. 3. Beam center cross-polarization figures of merit as a function
of steering angle for dipole array with perfectly aligned elements.

in the subspace spanned by the optimal beam pair. The
single-source calibrated CFM beam pair sensitivity also
lies within its corresponding bound (55), but the overall
sensitivity is lower than that of max-SNR.

Cross-polarization figures of merit are shown in Figure
3. Results are given for each beam center as a function
of beam steering angle. For the beam steered in the
boresight direction, the polarimetric calibration is essen-
tially perfect, but for beams steered off-boresight, the
figures of merit decrease. Results are shown for the u
polarization. Curves for the v polarized beams are nearly
identical.

Error in measured Stokes parameters relative to the
total source intensity for the single-source calibrated
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Fig. 4. Relative Stokes parameter error (44) and instrumental
polarization bound (47) as a function of steering angle for dipole array
with perfectly aligned elements.

max-SNR and CFM beam pairs is shown in Figure 4.
The source Stokes parameters are tabulated values from
the NRAO C Band VLA/VLBA Polarization Calibration
Database for 0371+331: I = 5.0522 Jy, Q = 0.1869,
U = 0.1109, V = 0. The error closely follows the
instrumental polarization bound (47) for both beam pairs.

It may be surprising that the perfectly aligned array,
with no receiver gain imbalances, no mechanical defects,
and exact analytical formulas for the element response,
is only exactly calibrated for the boresight beam. For
the boresight beam, the response vectors vu and vv in
(7) are orthogonal, and the eigenvectors obtained from
(75) are proportional to vu and vv . Thus, at boresight
the eigenvector max-SNR and CFM beam pairs can be
exactly calibrated without making use of the biscalar
transformation (87). For off-boresight steered beams, due
to the depolarizing effect of the reflector, vu and vv

are not orthogonal, and the eigenvector pair veig,1 and
veig,2 for the perfectly aligned array require polarimetric
calibration.

The Square Kilometer Array (SKA) design target for
relative instrumental polarization is 25 dB for general
polarimetric imaging and 40 dB for specialized applica-
tions (see [21] and other available SKA documents). For
the perfectly aligned array, the instrumental polarization
is better than 40 dB only for beam steering angles
near boresight. For off-boresight beams, it is apparent
that an additional polarimetric calibration beyond the
approximate single-source method of Section IV-C is
required.

B. Imperfectly Aligned Elements

We now study the effect of mechanical imperfections
on array feed polarimetric performance. A rotation in the
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Fig. 5. Beam center sensitivity for dipole array with perturbed element
orientations. The cut is at an azimuth angle of 30◦ from the x-direction
in the feed coordinate system. The sensitivity bound (55) is indicated
with gray shading.
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Fig. 6. Beam center cross-polarization figures of merit for dipole
array with perturbed element orientations.

x-y plane was applied to the orientation of each element
in the array, with rotation angle chosen from a zero-
mean normal distribution with 5◦ standard deviation.
Figure 5 shows that the beam sensitivity is not reduced
by the perturbation, but the upper and lower limits
of the sensitivity bound (55) are no longer equal for
the boresight beam. The cross-polarization figures of
merit (Figure 6) and Stokes instrumental polarization
(Figure 7) are significantly degraded. The instrumental
polarization is poorer than 25 dB for many beam steering
angles. For observations that require better polarimetric
accuracy, the nominal calibration approach presented in
this paper is not adequate, and a further calibration step
for each beam pair similar to the methods used for
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Fig. 7. Relative Stokes parameter error and instrumental polarization
bound for dipole array with perturbed element orientations.

traditional single-pixel feeds would be required.

VI. CONCLUSIONS

A signal and noise model for a dual-polarized beam-
forming array receiver has been used to develop polar-
ization figures of merit and a theory of ideal polarimet-
ric beamforming. An optimal polarimetrically calibrated
maximum-SNR beamforming algorithm was given. For
each angle of arrival, the algorithm provides a beam
pair with maximum sensitivity subject to a polarimetric
calibration constraint.

The optimal polarimetric beamforming algorithm re-
quires exact knowledge of the responses of the array
to orthogonally polarized waves from a given angle of
arrival. In practice, the array responses to orthogonally
polarized waves are not readily available. A practical
eigenvector-based maximum-SNR beamformer solution
has been shown to optimize sensitivity in the sense that
when the beams are polarimetrically calibrated, in the
absence of estimation error the beams become equiva-
lent to the optimal solution. In general, the eigenvector
maximum-SNR beam pair is not polarimetrically cali-
brated, and additional correction through estimation of
the beam pair Jones matrix is required. An approximate
single-source calibration procedure based on the approx-
imate orthogonality of the array element polarizations
was developed. The instrumental polarization of the
approximately calibrated beams for a perturbed dipole
phased array feed was better than 10 dB over the field
of view. The approximate single-source method therefore
provides a rough calibration method for routine obser-
vations that do not require high polarimetric accuracy.

In future work, more accurate polarimetric calibra-
tion methods for phased arrays should be studied. To

achieve lower instrumental polarization than the single-
source method used in this paper, standard polarimetric
calibration techniques could be applied on a beam-by-
beam basis to achieve lower instrumental polarization. To
avoid time-consuming observations of multiple calibrator
sources or long observations of a single polarized source
for each formed beam, methods for reducing the number
of required telescope pointings required to calibrate
all formed beams are needed. Beam cross-polarization
response patterns and the temporal stability of formed
beam polarization responses are also of interest.

APPENDIX

Here we derive (56). By diagonalizing C in (53), it
can be shown that tr[CRE] is bounded by

λmintr[RE] ≤ tr[CRE] ≤ λmaxtr[RE] (89)

In view of (3) and (55), the sensitivity of any beam in the
beam pair subspace is therefore bounded by the largest
and smallest values of

α(RE) =
kbB

Ssig
tr[VHW(WHRnW)−1WHVRE ]

(90)
Using the invariance of the trace with respect to the
ordering of a product of two matrices, this can be
expressed as

α(RE) =
kbB

Ssig
tr[(WHRnW)−1WHVREVHW]

(91)
Using (16), α(RE) becomes

α(RE) =
kbB

Ssig
tr[R−1

o,nRo,s] (92)

This leads directly to the bound (56). Because of the
properties of the trace, replacing W with the calibrated
beam pair W′ = WJH−1

does not change the value of
the trace:

tr[R′−1
o,nR

′
o,s] = tr[(J−1Ro,nJH−1

)−1J−1Ro,sJH−1
]

= tr[R−1
o,nRo,s] (93)

which shows that the trace of R−1
o,nRo,s is invariant

with respect to polarimetric calibration of the beam pair,
and the bound in (55) is a polarimetric calibration-
independent measure of the intrinsic beam pair sensi-
tivity.
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