Simulated Response of a 19 Element PAF for the Arecibo Radio Telescope PAF Feasibility Study

G. Cortes-Medellin, K. F. Warnick and B. D. Jeffs

National Astronomy and Ionosphere Center

Cornell University Ithaca NY 14853, USA

BRIGHAM YOUNG UNIVERSITY

AO PAF Feasibility Study

- Karl F. Warnick and Brian D. Jeffs (BYU)
- David Smith (MERLAB)
- Ganesh Rajagopalan, Phil Perilat,

Collaborators

Dana Whitlow, and AO tech Staff. (AO)

National Astronomy and Ionosphere Center

• Introduction:

- Arecibo's Shaped Optics and FOV
- Arecibo's PAF Feasibility Study
- Simulations and Preliminary Results
- Conclusions

- Most Sensitive Single Dish L-Band Radio telescope in the World.
- Main Spherical Reflector is 305 m in diameter

Introduction

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Introduction

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

- Most Sensitive Single Dish L-Band Radio telescope in the World.
- Main Spherical Reflector is 305 m in diameter
- Maximum scanning angle with respect to zenith: ±15°

Arecibo Gregorian Corrector

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Arecibo Gregorian Corrector

National Astronomy and lonosphere Center

Cornell University

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

- Main Spherical Reflector is 305 m in diameter
- Maximum scanning angle with respect to zenith: ±15°
- Arecibo Gregorian Corrector: Dual shaped Reflector System to correct for spherical aberration and produces a uniform aperture Illumination.
- Effective Elliptical Illumination of 237 x 207 m

Aperture Illumination and Radiation Pattern L-Band @ 1.375 GHz

HPBW=200 x 230"

Far Field Radiation Pattern [dB]

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

ALFA Arecibo L-Band Feed Array

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

National Astronomy and Ionosphere Center

Cornell University

Total Incoherent Multi Beam Pattern

TE11 Mode Horn \emptyset 25.0 cm x 26.0 cm c-c

Calculated Beam Pattern

ALFA

Measured Beam Pattern

Image by Carl Heilis, Dec 2004

HPBW=200" x 230"

Cornell University

HPBW=200" x 230"

AO

Cornell University

HPBW=200" x 230"

Cornell University

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

$SVS = N_b \Omega_b BW (A_{eff}/T_{sys})^2$

Survey Speed:

National Astronomy and Ionosphere Center

Survey Speed: Enter AO PAF

L-Band	N _b	Ω_{b}	BW	A _{eff}	T _{SYS}	A _{EFF} / T _{SYS}	SVS/ AO _{SVS}
		[deg ²]	[MHz]	[m ²]	[K]	[m ² /K]	
AO	1	0.0028	300	32750	27	1213	1
ALFA	7	0.0028	300	32750	27	1213	7
AO FPA	40	0.0028	300	32750	35	936	23.8

National Astronomy and lonosphere Center

Cornell University

- 1. Gregorian Optics
- 2. Array Elements
- 3. LNA's
- 4. Cryogenics
- 5. Signal Transport
- 6. Beam Former
- 7. Spectrometer

Bandwidth

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010 **BYU**

BRIGHAM YOU

Available Field of View with Arecibo's a Shaped Optics

Germán Cortés M May, 2010

Germán Cortés M May, 2010

AO Gregorian FOV: Scanning Losses

Cornell University

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Rev. -

BYU

BRIGHAM YOU

AO Gregorian FOV: Scanning Losses

National Astronomy and Ionosphere Center

Cornell University

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Rev. -

BYU

BRIGHAM YOU

Germán Cortés M May, 2010

AO Focal Plane Field Distribution from PO: On Axis, Wavelength: 21 cm

Co-Polar Intensity [dB]

657

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Co-Polar Phase Distribution

AO Focal Plane Field Distribution from PO: 430 arcsec, Wavelength: 21 cm

Co-Polar Intensity [dB]

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010 Co-Polar Phase Distribution Germán Cortés M May, 2010

Exploring the Available: FOV at AO Gregorian using PAF's

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

National Astronomy and Ionosphere Center

Cornell University

AO PAF Feasibility Study Exploring AO FOV with 19 BYU dipole PAF

Single Polarization 19 BYU Dipole PAF

HASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

National Astronomy and lonosphere Center

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

National Astronomy and Ionosphere Centei

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

National Astronomy and Ionosphere Centei

S

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

National Astronomy and Ionosphere Centei

.

ASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONON Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

AO PAF Feasibility Study PAF Positioner/Scanning Arm

- Design by Dr. David Smith
- 3 degrees of Freedom
- Radial Stage Range: 600 mm (+PAF Diam/2)
- Azimuth: +/- 180 degrees
- Focus Stage: -100 mm to +300 mm
- Weight: ~50 Kg

HASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Exploring the Available FOV at AO using PAF's: Simulations I

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

For each individual Dipole:

- Embeded Dipole Radiation Pattern
- Far Field Antenna Pattern Through AO Optics

HASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

For each individual Dipole:

- Embeded Dipole Radiation Pattern
- Far Field Antenna Pattern Through AO Optics

PAF Beam Forming

- Mutual Coupling
- Noise model

Coordinates,

Coordinates,

Coordinates...

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

SF I

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Rev. -

BYU

RIGHAM YOU

National Astronomy and lonosphere Center

SP

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

BYU

BRIGHAM YOU

BYU

BRIGHAM YOU

Exploring the Available FOV at AO using PAF's: Simulations II

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Arecibo Focal Phased Array Feasibility Study PAF Maps in the Sky: Cases BO to B6

Cornell University

BYU

BRIGHAM YOU

Cornell University

Sec 1

Cornell University

10

11

National Astronomy and lonosphere Center

Germán Cortés M May, 2010

Rev. -

BYU

RIGHAM YOU

BYU

RIGHAM YOU

Cornell University

Cornell University

Brigham Young University, Provo UT May 3-5, 2010

Cornell University

Brigham Young University, Provo UT May 3-5, 2010

Cornell University

Brigham Young University, Provo UT May 3-5, 2010

Rev. -

BYU

RIGHAM YOU

Cornell University

Brigham Young University, Provo UT May 3-5, 2010

Rev. -

BYU

BRIGHAM YOU

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

Separation x2.5 National Astronomy and Ionosphere Centei

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

Cornell University

Separation x2.5

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

BYU

RIGHAM YOU

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Rev. -

Cornell University

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

Rev. -

Cornell University

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

Separation x1.2 National Astronomy and Ionosphere Centei

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Rev. -

Cornell University

Arecibo Focal Phased Array Feasibility Study PAF Sky Beam Patterns: Cases BO to B6

Separation x1.0 National Astronomy and Ionosphere Centei

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

BYU BRIGHAM YOUNG UNIVERSITY

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

National Astronomy and Ionosphere Center

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010 **BYU**

RIGHAM YOU

Beam Forming Simulation Preliminary Results

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

BYU

Arecibo Focal Phased Array Feasibility Study PAF Overlapping Positions in Focal Plane: Cases B0 to B6 + C1 to C6

Cornell University

AND DO THE REPORT OF THE REPOR

PHASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

Germán Cortés M May, 2010

• Boresight beam pattern

Cornell University

• HPBW is 2.8 arcmin (ideally 2.9x3.3 arcmin)

National Astronomy and Ionosphere Center

HASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

HASED ARRAY ANTENNA SYSTEMS FOR RADIO ASTRONOMY Brigham Young University, Provo UT May 3-5, 2010

0

x (arcmin)

10

20

-10

Rev. -

10

0

x (arcmin)

20

BYU

Cornell University

- Sensitivity as a function of beam steering angle
 - Maximum value for each steering direction that is achieved over the 13 array positions

Maximum value for each steering direction that is achieved over the 13 array positions

- We have started the PAF feasibility Study of AO Shaped Optics
- The PAF positioner is being fabricated, as well BYU's single/dual pol PAF.
- We have made a series of simulations to calculate the expected performance of BYU's 19 PAF at Arecibo's Focal plane, based on the simulated pattern calculations of each of the 19 BYU dipoles.
- We obtained far field pattern data for 133 no overlapping locations of dipoles in the focal plane
- From the sensitivity plot, the 1 dB FOV (80% of peak sensitivity) is roughly 16 arcmin in diameter

National Astronomy and lonosphere Center

Cornell University

Measuring campaign of a Shaped Optics with a PAF by mid June.

