Uniform Aperture Approximation

Germán Cortés M., July 8, 2010, (Version 1)

I. Far Fields from a Circular Aperture with Uniform Illumination

The normalized far fields produced by a circular aperture of radius a with uniform illumination is given by

$$
\begin{align*}
E_{\theta}(\theta, \phi) & =2 \frac{J_{1}(k a \sin \theta)}{k a \sin \theta} \cos \phi \tag{1}\\
E_{\phi}(\theta, \phi) & =2 \cos \theta \frac{J_{1}(k a \sin \theta)}{k a \sin \theta} \sin \phi \tag{2}\\
|\mathbf{E}(\theta, \phi)|^{2} & =E_{\theta}(\theta, \phi)^{2}+E_{\phi}(\theta, \phi)^{2} \\
& =\left(2 \frac{J_{1}(k a \sin \theta)}{k a \sin \theta}\right)^{2}\left(\cos ^{2} \phi+\cos ^{2} \theta \sin ^{2} \phi\right) \tag{3}
\end{align*}
$$

For $\phi=0$ we get:

$$
\begin{align*}
E_{\theta}(\theta, \phi) & =2 \frac{J_{1}(k a \sin \theta)}{k a \sin \theta} \tag{4}\\
E_{\phi}(\theta, \phi) & =0 \tag{5}\\
|\mathbf{E}(\theta, \phi)|^{2} & =\left(2 \frac{J_{1}(k a \sin \theta)}{k a \sin \theta}\right)^{2} \tag{6}
\end{align*}
$$

The HPBW is obtain by solving

$$
\begin{equation*}
\left(\frac{2 J_{1}(k a \sin \theta)}{k a \sin \theta}\right)^{2}=0.5 \tag{7}
\end{equation*}
$$

The solution is:

$$
\begin{equation*}
\frac{2 \pi}{\lambda} a \sin \theta_{H P B W}=1.61634 \tag{8}
\end{equation*}
$$

Solving for a in wavelengths,

$$
\begin{equation*}
\frac{a}{\lambda}=\frac{0.257249}{\sin \theta_{H P B W}} \tag{9}
\end{equation*}
$$

II. Arecibo Aperture Efficiency Calculation

Arecibo's elliptical aperture of $237 \mathrm{~m} \times 207 \mathrm{~m}$ corresponding to a physical area of $38530.85 \mathrm{~m}^{2}$. One first order approximation is to assume a circular aperture, and use Equation 9 to obtain a value of aperture efficiency based on HPBW measurements.

A better approximation is to use the far field intensity distribution due to an elliptical aperture [Kathuria, 1983]

$$
\begin{equation*}
|\mathbf{E}(\theta, \phi)|^{\mathbf{2}}=\left(\frac{2 J_{1}\left(k \sqrt{a^{2} \sin ^{2} \theta \cos ^{2} \phi+b^{2} \sin ^{2} \theta \sin ^{2} \phi}\right)}{k \sqrt{a^{2} \sin ^{2} \theta \cos ^{2} \phi+b^{2} \sin ^{2} \theta \sin ^{2} \phi}}\right)^{2} \tag{10}
\end{equation*}
$$

where, a and b are the major and minor semi-axis of the elliptical aperture respectively. Therefore, by measuring $\theta_{H P B W}$ at $\phi=0$ and $\phi=90^{\circ}$ we obtain,

$$
\begin{gather*}
\frac{a}{\lambda}=\frac{0.257249}{\left.\sin \theta_{H P B W}\right|_{\phi=0}} \tag{11}\\
\frac{b}{\lambda}=\frac{0.257249}{\left.\sin \theta_{H P B W}\right|_{\phi=90^{\circ}}} \tag{12}\\
\text { REFERENCES }
\end{gather*}
$$

[Kathuria, 1983] Y. P. Kathuria, " Far-Field Radiation Patterns of Elliptical Apertures and its Annulli ", IEEE Transactions on Antennas and Propagation, Vol AP-31, No. 2, March 1983, pp. 360-364.

