
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

 Telephone: 781-981-5400
 Fax: 781-981-0590

14 November 2013

TO: Distribution
FROM: Alan Whitney, Chester Ruszczyk
SUBJECT: Mark 6 Command Set (Release 1.0)

Introduction

This memo documents the control program and command set for the Mark 6 VLBI data system when used in
normal field recording applications. Different software must be used to read recorded data into a correlator.

1. cplane program
The commands detailed in this memo are implemented by a program called cplane to control the DIM
functionality of the Mark 6 VLBI data-recording system. Playback functionality is not handled by this
application.

2. Notes on Mark 6 Command set
Note the following with respect to the command set:

1. Processing of all of the commands/queries expect the VSI-S communications protocol and
command/response syntax. cplane will also support remote procedure calls (RPCs).

2. Commands/queries are case insensitive.

3. Versions of program cplane with a revision date earlier than the date on this memo may not implement
all commands indicated in this memo or, in some cases, may implement them in a different way.

3. VSI-S Command, Query and Response Syntax
The following explanation of the VSI-S syntax may be useful in understanding the structure of commands,
queries and their respective responses. This explanation has been lifted directly from the VSI-S specification.
3.1 Command Syntax
Commands cause the system to take some action and are of the form
 <keyword> = <field 1> : <field 2> : …. ;

where <keyword> is a VSI-S command keyword. The number of fields may either be fixed or indefinite; fields
are separated by colons and terminated with a semi-colon. A field may be of type decimal integer, decimal real,
integer hex, character, literal ASCII or a VSI-format time code. White space between tokens in the command
line is ignored, however most character fields disallow embedded white space. For Field System compatibility,
field length is limited to 32 characters except for the ‘scan label’ (see Section 6), which is limited to 64
characters.

2

3.2 Command-Response Syntax

Each command elicits a response of the form

!<keyword> = < VSI return code > :
 <Mk6-specific return code> [: <Mk6-specific ASCII return info> : ..] ;

where

<keyword> is the command keyword

<VSI return code> is an ASCII integer as follows:
0 - action successfully completed
1 - action initiated or enabled, but not completed
2 - command not implemented or not relevant to this DTS
3 - syntax error
4 - error encountered during attempt to execute
5 - currently too busy to service request; try again later
6 - inconsistent or conflicting request
7 - no such keyword
8 - parameter error

<Mark6-specific return code> - Mark 6-specific ASCII return code

<Mark6-specific ASCII return info> - optional additional ASCII info relating to Mark 6 return code

3.3 Query and Query-Response Syntax

Queries return information about the system and are of the form

<keyword> ? <field 1> : <field 2> : …. ;

with a response of the form

!<keyword> ? <VSI return code> :
 [<Mk6-specific return code> [:<Mk6-specific ASCII return info> :] ..] ;

where

<VSI return code> is an ASCII integer as follows:
 0 - query successfully completed
 1 - action initiated or enabled, but not completed
 2 - query not implemented or not relevant to this DTS
 3 - syntax error
 4 - error encountered during attempt to execute query
 5 - currently too busy to service request; try again later
 6 - inconsistent or conflicting request
 7 - no such keyword
 8 - parameter error
 9 - indeterminate state

Note: A ‘blank’ in a returned query field indicates the value of the parameter is unknown.
A ‘?’ in a returned query field indicates that not only is the parameter unknown, but that some sort of
error condition likely exists.

3

4. Modules, Slots, Groups and Group References
Modules and Slot#’s

A Mark 6 module consists of 8 disks in a specially designed portable carrier. Each module is physically
identified by a permanent unique identifier (called Module Serial Number’ or ‘MSN’) printed on a barcode
label on the module front panel and can be plugged into a physical slot# in the Mark 6 system (typically slot#’s
are 1 to 4 for a system with a single expansion chassis.

The slots in a Mark 6 system are numbered 1 to n, where n is the number of available slots; the slot#’s are
prominently labeled on the Mark 6 chassis (see Figure 1). Each Mark 6 system chassis and expansion chassis
accommodates two slots; the most usual Mark 6 system will have a system chassis with one expansion chassis
for a total of four slots, though some systems may be able to support more expansion chassis.

Unlike the Mark 5 systems, each Mark 6 module is connected to the Mark 6 controller by a pair of high-speed
serial-data cables, each supporting four disks. Each cable-pair is labeled with the slot# that they support, but the
connection of the two cables to the module in that slot# is arbitrary; the Mark 6 system determines which cable
is connected to which connector. Both data-cables must be connected to the module in the associated slot#
before the keyswitch is turned to ‘on’, which applies power to the module; modules will be self-discovered by
the Mark 6 as they come alive. Correspondingly, a module should be physically removed only after the
associated group is logically ‘unmounted’, the keyswitch is turned to ‘off’, the associated red LED turns off
after ~5 seconds (to allow the disks to spindown before handling), and the data cables are disconnected.

1 2

3 4
1 23 4

Figure 1: Schematic representation of a Mark 6 system with system chassis (top), cable-management tray (center), and expansion

chassis (bottom). Four disk modules are mounted with associated data cables attached to module front panels.

Groups

A group consists of one of more modules designated as a set of modules that act as a single unit for recording
and playback. The maximum number of modules in a group is equal to the number of slots in the Mark 6
systembeing used, typically 2 or 4 modules, but some systems may accommodate as many as 6 modules.

A group can only be created from initialized modules, each of which has undergone an initialization procedure
that erases all data on a module and returns all its disks to a preset condition. In order to create a new group, all
the initialized constituent modules must be simultaneously mounted; the group is formed by designating the
slot#’s of the modules to be included in the group (subsequent mounting of the disks in a group may be to other
slot#’s), or by asking the Mark 6 to create a group from n available qualified modules.

Once a set of modules is designated as a group, that set of modules acts as a single unit and is inseparable and
unchangeable until the constituent modules are individually re-initialized.

4

Group References

Multiple groups of modules may be simultaneously mounted on a Mark 6 system up to the limit of the number
of available slots. In order to distinguish simultaneously mounted groups, each group is assigned a group
reference (or group_ref) consisting of an unordered set of digits corresponding to the slot#’s of the constituent
modules (e.g. ‘3’ ‘12’ or ‘314’ or ‘1234’ for groups of 1, 2, 3 and 4 modules, respectively). Note that the group
reference will change accordingly if the group of modules is subsequently remounted to a different set of slots
in the same or another Mark 6 system.

5. Scan names, Scan Labels and Linux filenames
cplane defines a ‘scan’ as a continuously recorded set of data. Each scan is identified by a scan name,
experiment name and station code, which are normally derived from the information in the associated VEX file
used in the scheduling of the experiment (see http://www.vlbi.org/vex)

The filename format for a file containing data from a single scan is typically
 <exp name>_<station code>_<scan name>.<file type>

where
<exp name> - experiment name; max 16 chars (consistent with current limit)
<station code> - standard 2-character ASCII station code, or decimal numeric value corresponding to 16-bit

numeric station code (see VDIF specification at http://www.vlbi.org for clarification).
<scan name> - assigned scan name (derived from VEX file or other source); max 16 chars
<file type> - identifies high-level data format within file (for example: ‘vdif’ and ‘m5b’ for VDIF and

Mark5B data formats, respectively)

Maximum scan-label length, including embedded underscores and possible scan-name suffix character, is 50
characters. <exp name>, <stn code> and <scan name> may contain only standard alpha-numeric characters,
except ‘+’, ‘-‘ and ‘.’ characters may also be used in <scan name>. All fields are case sensitive. No white
space is allowed in any of these subfields. Lower-case characters in all subfields are preferred. An example
Mark 6 filename is:

grf103_ef_scan123.vdif

In actuality, during the recording of a scan, the Mark 6 writes a single standard Linux file to each disk in the
active group and assigns system-specific unique filenames to each of these files that are different than the
prescribed Mark 6 filename. The Mark 6 keeps track of the correspondence between these filenames and the
Mark 6 filename through separate auxiliary files maintained on the data disks; in this way, the group of
individual files that comprise a Mark 6 file may be managed and referred to by the Mark 6 filename.

6. Command set overview
The Mark 6 set of commands and queries is designed to be operationally straightforward, as well as to provide
some diagnostic information needed to solve problems when they arise. There are only four top-level
commands necessary to control the Mark 6 system; seven queries are available to gather various types of
information, including diagnostic information to help isolate some types of problems, particularly the
identification of ‘slow’ disks.

Commands

input_stream: Each ‘input_stream’ command specifies the physical 10GigE port to which the stream is
connected, the data format (VDIF, Mark5B, etc) of the packet payloads, an ASCII label that is used to identify
the datastream, and the IP/MAC source address for packet filtering (if necessary). Up to four data streams of up
to 4Gbps each may be defined.

5

mod_init: ‘Initializes’ a disk module by erasing all data and readies it to be assigned to a group.

group: The ‘group’ command is used to manage groups of modules, as follows:
− ‘auto’ - create a new group of n modules from the pool of qualified available modules
− ‘new’ - create a new group from a set of specified modules (by slot#)
− ‘mount’ – mount a group of modules
− ‘open’ – ‘open’ a specified group to enable it for recording
− ‘close’ – ‘close’ a specified group to recording, but may be later re-opened
− ‘protect’ –prevent further recording to a specified group until ‘unprotected’
− ‘unprotect’ – designate a specified group as available for recording, but does not ‘open’ for recording
− ‘erase’ – erase all data from a specified group
− ‘unmount’ – prepare a specified group for physical removal of associated modules

record: Turn scan recording on/off or specify a start time and duration. Each scan is labeled with a unique scan
name, the experiment name and station name.

Queries

A variety of queries are available to ascertain the status and health of the system, and to help provide some
limited diagnostic information as necessary:

disk_info: Provides disk-by-disk module information about serial#, model, manufacturer, temperature, storage
capacity, and amount of storage currently used; very useful for locating slow or dead disks.

mstat: Provides module properties and status by slot#, group, or all mounted modules. Properties include slot#,
associated group (if any), extended-MSN, #disks discovered, #disks registered at initialization, total module
storage and amount used. Status of each specified module is shown as ‘recording’, ‘open’, ‘closed’, ‘initialized’
‘unknown’, etc., as well as ‘unprotected’ or ‘protected’ as appropriate. Also returned are the MSN(s) for any
missing (i.e. unmounted) module(s) of an incomplete group, allowing missing modules to be quickly identified.

rtime: Returns amount of recording time at a specified data rate available on the currently open group. Before
issuing a ‘record’ command, the Field System can check if space is available and take appropriate action as
needed to identify a new available group.

scan_check: Reads a small portion of the last-recorded scan (default) or specified scan and reports such
information as scan#, scan label, #data streams and corresponding stream labels, data format, duration of
recording, total storage used, average data rate, and amount of missing data.

scan_info: Returns general information about the last-recorded scan (default) or specified scan without actually
reading any of the data of the scan. Reports such things as Mark 6 system serial#, scan#, scan label, current
status (pending, recording, flushing buffers, complete), start time, duration, and #data streams.

sys_info: Returns general system information such as Mark 6 system serial#, OS type and revision, cplane
version, command set revision, available RAM, max number data disks supported, #slots in system, #input ports
and port reference names.

msg: Retrieves (if available) the ASCII message associated with a specified cplane error return code

6

7. cplane Command/Query Summary (by Category)
7.1 System Setup and operation

delete p. 7 Delete recorded scan(s) from module group

execute p. 10 Upload XML command file (NYI)

group p. 11 Manage module groups

input_stream p. 15 Define input data stream(s)

m6cc p. 18 Execute uploaded XML command file (NYI)

mod_init p. 17 Initialize a disk module

record p. 23 Turn recording on|off

7.2 Status and information queries

disk_info? p. 8 Get information about individual disks in a module

DTS_id? p. 9 Get brief system information (backwards compatible with Mark 5 ‘DTS_id?’ query

group_members? p. 12 Get group MSNs

list? p. 17 List scans recorded on mounted group

msg? p. 21 Get ASCII message associated with cplane return code

mstat? p. 22 Get module status

rtime? p. 26 Get remaining record time on open group

scan_check? p. 27 Quick check of data in recorded scan (NYI)

scan_info? p. 29 Get summary information for recorded scan (NYI)

status? p. 30 Get detailed Mark 6 system status

sys_info? p. 31 Get Mark 6 configuration details

7.3 Processing-status indicators requested by NRAO

gsm p. 12 Set/get Group State Mask (GSM); (NRAO-specific command)

gsm_mask p. 14 Set mask to enable changes in GSM; (NRAO-specific command)

8. cplane Command Set Details

This section contains a complete description of all cplane commands/queries in alphabetical order.

7

delete – Delete recorded scan(s) from group [command list]
Command syntax: delete = <scan>;
Command response: !delete = <return code> : <cplane return code> ;

Query syntax: delete?;
Query response: !delete? <return code> : <cplane return code> : <last scan deleted> ;

Purpose: Delete a scan from an active module
Query parameters:

Parameter Type Allowed values Default Comments
<scan> char scan name Delete specified scan from mounted group (see Notes 1 & 2)

Query response parameters:

Parameter Type Values Comments
<scan> char - Last scan removed.

Notes:
1. Unlike previous version of Mark5 that recorded data sequentially, the Mark6 allows the deletion of any scan; the released space may be used for

subsequent recording. Note, however, that depending upon the physical pattern of deleted data on member disks, maximum subsequent re-recording
data rate may be somewhat diminished.

2. Group must be ‘open’ and ‘unprotected’.
3. To erase all scans in a group, use the ‘group=erase’ command.
4. An extension in planned to allow deletion of multiple scans through a ‘wild-card’ specification of <scan>.

delete
delete

8

disk_info – Get disk information about individual disks in a module (query only) [command list]
Query syntax: disk_info? <info_type> : <slot#> ;
Query response: !disk_size? <return code> : <cplane return code> : <info type> : <slot#> : <eMSN>

: <#discovered disks> : <#registered disks> : <#disks> : <disk1 info> : …. : <diskn info> ;
Purpose: Get information about individual disks in a specified module
Query parameters:

Parameter Type Allowed values Default Comments
<info_type> char serial |

model |
vendor |
usage |
size |
temp

usage

‘serial’ – disk serial#’s
‘model’ – disk model #’s
‘vendor’ – vendor/manufacturer
‘usage’ – disk usage in GB
‘size’ – disk sizes in GB
‘temp’ – disk temperature in degC

<slot#> int available
slot#’s

- slot# - return info on module in specified slot#

Query response parameters:
Parameter Type Values Comments
<info_type> char - Information type being returned
<slot#> int 1-9 Module slot#
<eMSN> char - Extended-MSN of first (and perhaps only) module in group
<#discovered disks> int 1-9 #disks discovered in mounted module
<#registered disks> int 1-9 #disks registered at initialization
The following is repeated for each registered disk in module; order of disk information is always identical to order of serial number query
<diskx info> - - Information of type requested by <info_type>:

‘serial’ – disk serial# at initialization; preceded by ‘-‘ if disk is missing/dead (see Notes 1 and 2)
‘model’ – disk model # at initialization (see Note 3)
‘vendor – disk vendor (WD, SS, HT, SG, etc)
‘usage’ – current disk usage in GB (see Notes 3 and 4); null if unavailable
‘size’ – disk size in GB at initialization (see Note 3)
‘temp’ – current disk temperature in degC; null if unavailable

Notes:
1. At module initialization, the serial#’s, model#’s and disk sizes of all disks in a module are written to each disk in the module; this information is then

accessible even if one or more of the original disks fail (as long as at least one disk in the module is still OK).
2. For any undiscovered disks (missing/dead), the corresponding reported serial number(s) is preceded by ‘-‘. This allows easy identification of missing/dead

disks by serial number within a module.
3. All disk information is listed in the same order and position as in ‘disks? serial’ query so that physical disks can associated with the query-return info.
4. The Mark 6 system writes to disks in a round-robin fashion, but if a disk is not ready to write when its turn comes around, Mark 6 skips over that disk and

writes to the next one instead. If this happens repeatedly to the same disk, it will accumulate noticeably less data than its properly operating neighbors.
Therefore, if an examination of the amount of data recorded on individual disks across a module reveals significant disparity, one or more slow and/or
improperly functioning disks should be suspected. A ‘disks? serial;’ query may be used to identify corresponding physical disks.

disk_info
disk_info

9

DTS_id – Get brief system information (query only) [command list]
Query syntax: DTS_id? ;
Query response: !DTS_id ? <return code> : <system type> : <software version number> : <serial number> : <command set

revision>;

Purpose: System info query backwards compatible with Mark 5 system

Monitor-only parameters:
Parameter Type Values Comments

<system type> char Mark6

<software version
number>

char Version number for current version of cplane

<serial number> ASCII System serial number; generally is in the form ‘mark6-xxxx’ where xxxx is the system serial number (see
Note 1)

<command set revision> char Mark 6 command set revision level corresponding to this software release (e.g., ‘3.0.4’)

Notes:
1. The ‘DTS_id?’ query provides legacy support for the same command on the Mark 5 systems, providing a common query to allow the user to distinguish
between a Mark 5 and Mark 6 system.
2. The Serial number is of the format Mark6-XXXX, but if an expansion chassis is connected and the serial number of the expansion chassis is set the output of
the serial number will be Mark6-XXXX-YYYY. Where XXXX is the main Mark6 serial number and YYY is the expansion chassis serial number if present.

D
T

S_id
D

T
S_id

10

execute – Upload an XML file to Mark 6 (NYI) [command list]
Command syntax: execute = <action>:[<filename>];
Command response: !execute = <return code> : <cplane return code> ;

Query syntax: execute?;
Query response: !execute? <return code> : <cplane return code> : <action>:[<file>] ;

Purpose: Upload an XML schedule file Mark 6.
Query parameters:

Parameter Type Allowed values Default Comments
<action> char upload |

append |
finish

- ‘upload’ – name to be assigned to uploaded xml schedule file and includes first block of data
‘append’ – append data to schedule file,
‘finish’ – last block of data; write file to disk

<filename> char - Name of file being uploaded and written to OS disk

Query response parameters:

Parameter Type Values Comments
<action> char uploading |

finished |
error |

-

‘uploading’ – presently uploading an xml schedule file,
‘finished’ – successfully uploaded an xml schedule file,
‘error’ – file did not upload successfully
‘-‘ - inactive

<filename> char Name of file being uploaded and written to OS disk

Notes:
1. The ‘execute’ command transmits, piece by piece, an XML ASCII file (which may, for example, be an xml-based schedule or configuration file created from

VEX) to a Mark 6 through a VSI-S connection. This file may then be subsequently executed using the ‘mk6cc’ to initiate. Additional <actions> may be
added in the future.

2. The ‘upload’ option specifies a filename to be created and initiates the upload process, which transfers the file piece by piece through individual VSI-S
transfers.

3. An ‘append’ action appends to the file; there is no restriction on the number of ‘append’ actions that can be initiated after an ‘upload’ is initiated.
4. A ‘finish’ must be issued to close the process, indicating the last block of data and causing the specified file to be written.
5. Errors will be returned if :

a. ‘uploads’ is initiated, with the state not ‘null’ or ‘finished’;
b. ‘append’ is initiated with the previous state not being upload on the receipt of the first command and all subsequent states being ‘upload’;
c. ‘finish’ issued with the prior state being ‘upload’ or ‘append’

execute
execute

11

group – Manage module groups [command list]
Command syntax: group = <action> : <param> ;
Command response: !group = <return code> : <cplane return code> : <group_ref >;

Query syntax: group? ;
Query response: !group ? <return code> : <cplane return code>: <group1> : <group2 > [: …] ;
Purpose: Manage module groups.
Command parameters:

Parameter Type Allowed values Default Comments

<action> char auto |
new |

mount |
open |
close |

protect |
unprotect |

erase |
unmount

- auto – create a group from available eligible modules
new – create a group from specified module(s)
mount – mount a group of modules
open – open a group for recording
close – close the open group, if any
protect – write-protect a group; automatically ‘closes’ group
unprotect – write-enable a group
erase – erase all data (must be preceded immediately by and unconditionally by ‘unprotect’ command)
unmount – logically unmount a group in preparation for physical removal

<param> int See comments - For ‘auto’ – #modules from which to create new group of modules (slot#’s unspecified).
For ‘new’ – group_ref of new group of modules (e.g. ‘12’, ‘1234’, etc.)
For ‘mount’ – group_ref of new group of modules (e.g. ‘12’, ‘1234’, etc.)
For ‘open’ – group_ref to be opened for recording (e.g. ‘12’ for group with modules in slot#s 1 & 2).
For ‘close’ – null
For ‘protect’ – group_ref to be write-protected.
For ‘unprotect’ – group_ref to be ‘unprotected’ (i.e. write-enabled)
For ‘erase’ – group_ref to be erased
For ‘unmount’ - slot# or group_ref to be physically unmounted; error if attempt to unmount an open group

Query response parameters:
Parameter Type Values Comments

<group_ref> int #modules |
group_ref

#modules – For ‘auto’ create
group_ref – For an existing group, group_ref must include all modules in group; order of slot#’s in group_ref is
irrelevant (i.e. ‘12’ is equivalent to ‘21’)

Rules:
a. A new group of one or more modules can only be assembled from initialized (i.e. empty, unprotected) module(s).
b. A successfully created new group will be automatically ‘mounted’.
c. Once created, a group of n modules is referenced by an n-digit number group_ref with the module slot#’s as unordered digits (e.g. ‘3’, ‘12’,‘314’,1234’).
d. Only one group may be ‘open’ at any given time.
e. A successful ‘protect’ command automatically closes the affected group, but leaves the group available for reading (such as ‘scan_check’).
f. A ‘protected’ group must be ‘unprotected’ before it can be opened for recording.
g. An ‘erase’ command must be immediately and unconditionally preceded by an ‘unprotect’ command (even if the group is already ‘unprotected’).
h. A ‘unmount’ command ensures that the specified group is quiescent before physical removal of the associated modules; an attempt to ‘unmount’ a

currently open group will be rejected and cause an error return.

group
group

12

group_members – Get group eMSN members (query only) [command list]
Query syntax: group_members? <slot> ;
Query response: !group_members? <return code> : <cplane return code > : <eMSN of slot> : [<eMSN2>] : [<eMSN3>] :

[<eMSN4>];

Purpose: Get a groups eMSN members, by querying a specific module in a slot

Monitor-only parameters:
Parameter Type Values Comments

<slot> int 1-4 Slot with module being queried

<eMSN of slot> ASCII The eMSN of the slot being queried

[<eMSN2>] ASCII Get additional groups eMSN members (see Note 1)

[<eMSN3>] ASCII Get additional groups third eMSN members if it exists

[<eMSN3>] ASCII Get additional groups forth eMSN members if it exists

Notes:

 1. If the module belongs to a group of greater than 1, the additional eMSN will be displayed. If the module belongs to a group of one, only the slots

 eMSN will be provided, or a “-“ if it is not initialized into a group yet.

group_m
em

bers
group_m

em
bers

13

gsm –Set/get Group State Mask (NYI) [command list]
Command syntax: gsm = <group_ref> : <GSM> ;
Command response: !gsm = <return code> : <cplane return code> ;

Query syntax: gsm? <group_ref>;
Query response: !gsm? <return code> : <cplane return code> :

<group_ref> : <GSM> : <eMSN1 [: eMSN2 : ...] ;

Purpose: Set/get Group State Mask (GSM): logs the last significant group operation; this is an NRAO-specific command.
Command parameters:

Parameter Type Allowed values Default Comments

<group_ref> int group_ref -

<GSM> char recorded |
played | erased

|unknown |
error

none To be used only if automatically-set GSM parameter is to be overwritten.
Requires a preceding ‘vol_cmd= <protect>:<group_ref>; command.
Current value of GSM is ignored.

Query parameters
Parameter Type Allowed values Default Comments

<group_ref> int group_ref All groups Target group_ref

Query response parameters:
Parameter Type Values Comments

<group_ref> int group_ref Group reference

<GSM> char recorded |
played | erased |
unknown | error

recorded – last significant operation was record or a record-like function
played – last significant operation was playback
erased – last significant operation was erase
unknown – ?
error – error occurred; for example, a failure during one of the significant operations above

<eMSNn> char - eMSN(s) of modules in group

Notes:
1. Normally, the setting of the GSM parameter happens automatically whenever a record, play, or erase command is issued. However, the

<gsm=...> command is provided to manually overwrite the current GSM parameter. This command requires a preceding ‘protect=off’ and
affects only the active module. A ‘gsm=…” command ignores the current value of the GSM (see ‘gsm_mask’ command).

2. The GSM logs the last significant group operation. It is designed to distinguish between groups waiting to be correlated, have been correlated,
or have no data (erased) and ready to be recorded. The GSM is saved on all modules in the group in the same area as the permanent MSN.
The scan_check command does not affect GSM.

3. The ‘gsm’ and ‘gsm_mask’ commands were requested by NRAO and are designed primarily for use at their correlator.
4. If no modules are inserted, an error code 6 is returned.

gsm

gsm

14

gsm_mask – Set mask to enable changes in Group State Mask (NYI) [command list]
Command syntax: gsm_mask = <erase_mask_enable> : <play_mask_enable> : <record_mask_enable>;
Command response: !gsm_mask = <return code> : <cplane return code> ;

Query syntax: gsm_mask? ;
Query response: !gsm_mask? <return code> : <cplane return code> :

<erase_mask_enable> : <play_mask_enable> : <record_mask_enable> ;

Purpose: Set mask to enable changes in Group State mask (GSM); this is an NRAO-specific command.

Command parameters:
Parameter Type Allowed values Default Comments

<erase_mask_enable> int 0 | 1 1 0 – disable an erase operation from modifying the GSM.
1 – enable erase operation to modify the GSM.

<play_mask_enable> int 0 | 1 1 0 – disable a play operation from modifying the GSM.
1 – enable play operation to modify the GSM.

<record_mask_enable> int 0 | 1 1 0 – disable a record operation from modifying the GSM.
1 – enable record operation to modify the GSM.

Query parameters: None
Query response parameters:

Parameter Type Values Comments

<erase_mask_enable> int 0 | 1

<play_mask_enable> int 0 | 1

<record_mask_enable> int 0 | 1

Notes:
The GSM mask is intended to prevent accidental changes in the GSM. When a module is at a station, the GSM setting of 1:0:1 will
disable a play operation from modifying the GSM. Likewise, at a correlator one might want to disable the record_mask_enable.

group
gsm

_m
ask

gsm
_m

ask

15

input_stream – Define input data stream(s) [command list]
Command syntax: input_stream = <action> : [<stream_label>] : [<data_format>] : [<payload_size>]:[<payload_offset>]

:[<psn_offset>]:[<interface_ID>]: [<filter address>] ;
Command response: !packet = <return code> : <cplane return code> ;
Query syntax: input_stream? [<stream_label>] ;
Query response: !input_stream? <return code> : <cplane return code> :

 <stream_label1> : <data format1> : <payload_size1>:<payload_offset1>
:<psn_offset1>:<interface_ID1> : [<filter address1>] [port#1] :
 <stream_label2> : <data format2> : <payload_size2>:<payload_offset2>
:<psn_offset2>:<interface_ID2> : [<filter address2>] [port#2] :…;

Purpose: Select input data stream
Command parameters:

Parameter Type Allowed values Default Comments

<action > char add |
delete |
commit

- ‘add’ - add a new input stream definition
‘delete’ – delete existing specified <stream_label>
‘commit’ – commit to the existing set of stream declarations. See Note 1 & 2.

<stream_label> char 16 chars max - User-specified label for input data stream (16 chars max); example ‘RDBE1’. See Note 3.

<data_format> char 4 chars max vdif ‘vdif’ – VDIF data format;
‘m5b’ – Mark 5B data format
Other data formats may be specified.
By default, a lower-case version of this parameter is used as the Mark 6 filename suffix unless
overridden by a specification in the ‘record=’ command. See Note 4.

<payload_size> int 64 < X < 9000 8224 The length of the payload received (bytes) to be recorded. See Note 5.

<payload_offset> int 0 <= X < 256 42 The headers of the received packet to exclude from the recorded data. See Note 6.

<psn_offset> int 0<= X < 9000 0 The offset from the start of the receive packet to the packet serial number. See Note 7.

< interface_ID > char 16 chars max - System-defined interface name (example: ‘ETH01’ for Ethernet port 1)

< filter address > int IP or MAC
address

- Specify exclusive IP or MAC address from which will be recorded:
 For IP connection: IP address (i.e. 192.68.1.34)
 For MAC connection: MAC address (i.e. 01.23.45.67.89.ab; must use ‘.’ as delimiter)

<port#> int port number - Destination port# to which data stream is addressed

Query parameters:
Parameter Type Allowed values Default Comments

<stream label> int - All stream labels Specified stream label

Query response parameters:
Parameter Type Values Comments

<stream_label > char 16 chars max User-specified stream label

<data format> char 4 chars max Data format

input_stream

input_stream

16

<payload_size> int 64 < X < 9000 The length of the payload received (bytes) to be recorded. See Note 5.

<payload_offset> int 0 <= X < 256 The headers of the received packet to exclude from the recorded data. See Note 6.

<psn_offset> int 0<= X < 9000 The offset from the start of the receive packet to the packet serial number. See Note 7.

< interface_ID > char 16 chars max System-defined interface name

< filter address > IP or MAC
address

IP/MAC address for data filtering

<port#> int - Destination port#

Notes:
1. The only required field for the command is <action>. If the action is add or delete, the remaining optional parameters must be provided.

If the action is commit, no other parameters are required.
2. Multiple simultaneous input data streams may be specified (one at a time) and types may be intermixed.
3. The stream label is the identifier for a specified 10GigE data stream; each input data stream must have a separate stream label.
4. Each defined ‘input stream’ is recorded to a separate set of Linux files.
5. Payload size defines the packet length in bytes to be recorded after the headers are stripped off. This assumes that the first word contains

the start of the Mark5B or VDIF header.
6. Payload offset is the number of bytes into the received payload that should be removed and not written to disk. If a VDIF payload is

encapsulated directly into a layer 2 frame, the offset will be 0. If using VTP format, than the UDP/IPv4/Sequence number should be
accounted for and skipped.

7. If the PSN_offset indicates the location of the packet serial number (PSN) to be compliant with VTP and also to guarantee the ordering of
data stored to disk. A value of “0” implies the data plane will not look for a PSN or guarantee order of the data. A non-zero value will
indicate the byte offset position, from the start of the payload received,

input_stream

input_stream

17

list – List scans recorded on a mounted group (query only) [command list]
Query syntax: list? [<group_ref>] ;
Query response: !list?<return code> : <cplane return code> : <group_ref>:

 <scan1> : <length1>:<creation time1> : …
 <scann> : <lengthn>:<creation timen>;

Purpose: List scans recorded on specified group
Query parameters:

Parameter Type Allowed values Default Comments

<group_ref> Char - Active group module Lists the scans recorded on specified group. See Notes 1 &2

Query response parameters:
Parameter Type Values Comments

<group_ref > char 16 chars max Module group reference listing is valid for

<scanx> char 4 chars max Scan name

< length > int Length of the scan in Gbytes bytes

< creation time > ASCII Date when the scan was created

Notes:
1. If recording is not currently active: A list of scans will be obtained by reading from the modules(s) of the requested group,

which may be open or closed.
2. If recording is active:

a. a ‘list’ request for a ‘closed’ group will unconditionally return with an error code ‘5’.
b. a ‘list’ request for an ‘open’ group will be serviced by listing the scans cached in memory.

list
list

18

m6cc – Execute the mark6 command and control application (TBD) [command list]
Command syntax: m6cc = <config_file>;
Command response: !m6cc = <return code> ;

Query syntax: m6cc? ;

Query response: !m6cc ? <return code> : <cplane return code>
 : <config_file> : <state> ;

Purpose: Execute the Mark6 command and control application using a specified XML configuration file describing actions.
Command parameters:

Parameter Type Allowed values Default Comments

<config_file> Ascii An existing configuration file uploaded to the Mark6.

Query response parameters: (returns information for most recently initialized module)
Parameter Type Allowed values Comments

<config_file> Ascii Name of the file being processed, or the last file processed.

<state> char active |
complete |

partial |
error

‘active’ – a configuration file is being processed and executed.
‘complete’ – the configuration file was successfully processed through completion.
‘partial’ – the configuration file was processed and terminated before completion.
‘error’ – error condition exist e.g. the file does not exist.

Notes:

m
6cc

m
6cc

19

mod_init – Initialize a disk module and assign a Module Serial Number (MSN) [command list]
Command syntax: mod_init = <slot#> : <#disks> : <MSN> : [<type>] : [<new>];
Command response: !mod_init = <return code> ;

Query syntax: mod_init? ;

Query response: !mod_init ? <return code> : <cplane return code>
 : <slot#> : <eMSN1> : <#disks discovered> ;

Purpose: Initialize a disk module by assigning it a unique ‘permanent’ Module Serial Number (MSN).

Command parameters:
Parameter Type Allowed values Default Comments

<slot#> int 1-9 Physical slot# of module to be initialized

<#disks> int 1-16 - #disks installed in module. See Note 1

<MSN> char - Permanent 8-character ‘Module Serial Number’ to be assigned to the connected disk module
(example:‘MPI_0153’). MSN format rules are enforced; see Note 2. The module capacity and disk
manufacturer are extracted and appended to the MSN to create the ‘extended-MSN’ (‘eMSN’)
[example ‘MPI_0153/16/WD’); see Notes 1 and 3.

<type> char sg | raid sg The format structure that the disk module will be created in:
‘sg’ – scatter gather resilient format disk module
‘raid’ – Raid 0 formatted disk module

<new> char new | null null Required if MSN of previously initialized module is being changed. See Note 2.

Query response parameters: (returns information for most recently initialized module)
Parameter Type Allowed values Comments

<slot#> int 1-9 Physical slot#

<#disks discovered> int 1-16 #disks in associated module

<extended MSN> char - Example: ‘MPI_0153/16/4/WD’; see Notes 3 and 4.

Notes:
1. The ‘mod_init=..’ command is normally issued only when a module is first procured or assembled, when the disks are changed or

upgraded, or when a multi-module group is dissolved. All connected disks in the specified slot# will be initialized; all data on the
module will be erased. The number of disks specified must exactly match the number of disks discovered by the Mark 6 controller
in the specified slot#. An error will be returned if #disks specified are different from number of disks discovered by the Mark 6
controller.

m
od_init

m
od_init

20

2. For a module that has been previously initialized: Unless the ‘change’ parameter is specified, the specified MSN must match the
existing module MSN or the initialization request will fail. This procedure is intended to help prevent inadvertent changes to the
MSN.

3. The format of the Module Serial Number (‘MSN’ for short – see Note below) is enforced as follows:
MSN must be 8 characters in length with format ‘ownerID_serial#’ where:
a. ownerID – 2 to 5 upper-case alphabetic characters (A-Z). The ‘ownerID’ must be registered with Jon Romney at NRAO

(jromney@nrao.edu) to prevent duplicates. Numeric characters are not allowed. Any lower-case characters will
automatically be converted to upper case.

b. serial# - numeric Module Serial Number, with leading zeroes as necessary to make the MSN exactly 8 characters long;
minimum two digits, three recommended . Alphabetic characters are not allowed in the serial#.

Note: ‘MSN’ is equivalent to VSN or ‘Volume Serial Number’ in the Mark 5 world.
4. ‘Extended-MSN’ (‘eMSN’) is of the form ‘MSN/capacity(TB)/max data rate(Gbps)/disk manufacturer’. cplane queries the disks

to compute the capacity of the module in TB and the disk manufacturer (e.g. ‘WD’, ‘SG’, ‘HT’, ‘SS’, for Western Digital,
Seagate, Hitachi, Samsung, for example); if mixed-disk models, <disk type> will be set to ‘MX’; these fields are then appended to
the to create the e-MSN. Mixed disk models and sizes are supported by the Mark 6, but not encouraged, particularly mixed disk
sizes.

5. The replacement of any disk(s) in an initialized module requires re-initialization of the module with the ‘mod_init=’ command
before data can be recorded. All existing data will be lost.

m
od_init

m
od_init

21

msg – Get ASCII message associated with cplane return code(query only) [command list]
Query syntax: msg? <cplane return code> ;
Query response: !msg ? <return code> : <cplane return code> : <cplane-specific ASCII message> ;

Purpose: Get ASCII error message associated with specified cplane return code

Query parameters:
Parameter Type Allowed

values
Default Comments

<cplane return code> int - - cplane numerical return code

Query response parameters:
Parameter Type Values Comments

<cplane return code> int <cplane return code>

<error message> literal
ASCII

 Associated ASCII error message, if any

Notes:
1. The ‘error?’ query is used to retrieve an explanation of cplane-specific return codes (usually errors).
2. <return code> 8 (parameter error) returned if specified <cplane return code> does not exist.

m
sg

m
sg

22

mstat – Get module status (query only) [command list]
Query syntax: mstat? [<type>];
Query response: !mstat? <return code> : <cplane return code> :

 <group_ref1> : <slot#> : <eMSN1> : <#disks discovered> : <#disks nominal> : <#GB remaining> :
 <#GB total> : <status1> : <status2> :<type>
 [: <group_ref2> : <slot#> : <eMSN2> : <#disks discovered> : <#disks nominal> : <#GB remaining> :
 <#GB total> : <status1> : <status2> : <type>]
 [:…] ;

Purpose: Get module status

Query parameters:
Parameter Type Allowed values Default Comments

<type of query>

int/
char

null | all
<slot#> |

<group_ref> |
open

open

all|null returns information on all mounted modules.
<slot#> returns information module in specified slot#.
group_ref or partial group_ref (i.e. one or more mounted modules of multi-module group)
‘open’ returns information on all modules in currently open group (if any).

Query response parameters Returns following information about specified group(s)
Parameter Type Values Comments

<group_ref> int int Standard group_ref if complete group is mounted (e.g. ‘2’ or ‘12’ or ‘1234’);
Trailing zero assigned for every ‘unmounted’ module of multi-module group
 (e.g. ‘10’ for two-module group associated with module in slot#1, but only module in slot #1 is mounted;
 ‘1400’ for 4-module group associated with modules in slots 1 & 4, but only two modules mounted)
Zero if module is not assigned to a group (i.e. <status1> is ‘initialized’ or ‘unknown’)

<slot#> int 0-9 Physical slot# for mounted module.
Zero for ‘unmounted’ module of multi-module group.

<eMSN> char - Extended Module Serial Number (see Notes for ‘mod_init’ command)

<#disks discovered> int - Number of disks in module discovered; zero if ‘missing’ module

<#disks registered> int - Number of disks registered

<#GB remaining> int #GB remaining unrecorded on group

<#GB total> int #GB total storage in group

(continued)

m
stat

m
stat

23

<status1> char recording |

open |
closed |

mounted |
incomplete |
unmounted |
initialized |
unknown

recording – associated group is recording (
open – associated group is complete and open
closed – associated group is closed
mounted – associated group is mounted
incomplete – associated group has one or more unmounted modules
unmounted – unmounted module of a multi-module group
initialized – initialized, empty, unprotected module unassigned to a group
unknown – status of module is unknown

<status2> char ready |
recording |
flushing |
protected |

unprotected |
null

ready – associated group is ready to record (<status1> must be ‘open’)
recording – associated group is recording (<status1> must be ‘open’)
flushing – associated group is flushing buffers to disks (<status1> must be ‘open’)
protected – associated group is protected (<status1> may be ‘closed’ or ‘incomplete’)
unprotected – associated group is unprotected, i.e. write enabled (<status1> may be ‘open’, ‘closed’, or ‘incomplete’)
null – applies to all ‘initialized’, ‘unmounted’ or ‘unknown’ modules

<type> char sg | raid The format of the disk module. scatter gather (sg) or raid0 (raid)

Notes:
1. Status of all mounted modules is returned, as well as information about unmounted modules in incomplete groups.
2. Every module within a group contains information about all modules in the group; this allows the ‘mstat’ command to return

complete identifying information for all unmounted modules within a group.
3. The information returned by the ‘mstat’ command is usefully presented in tabular form. The following table illustrates an example

(for illustrative purposes, shows more slots than are normally available):

Group Slot

eMSN #disks
found

#disks
registered

GB
(remaining)

GB
(total)

Status1 Status2 Type Comments

12 1 ABC_0450/8/4/WD 8 8 7800 8000 open unprotected sg
12 2 ABC_0458/8/4/WD 8 8 7799 8000 open unprotected sg

Group 12 is ready to record.

- 3 XYZ00123 8 8 16000 16000 initialized (null) Available to be assigned to a group
- 4 XYZ00124 8 8 16000 16000 initialized (null) Available to be assigned to a group

56 5 QRS_0900/16/4/SS 8 8 3 16000 closed protected sg
56 6 QRS_0901/16/4/SS 8 8 4 16000 closed protected sg

Group 56 is full, closed and protected, and may
be physically unmounted

7- 7 QRS_0902/16/4/SS 8 8 8765 16000 incomplete unprotected sg Slot 7 is part of an incompete 2-module group.
8 8 CDE_0321/16/4/HT 8 8 16000 16000 closed unprotected raid Single-module group. Full.

m
stat

24

record – Turn recording on|off; assign scan label [command list]
Command syntax: record = <action> : [<duration>] : <data_size> : [<scan_name>] : [<experiment_ name>] : [<station_code>] ;

Command response: !record = <return code> : <cplane return code> ;
Query syntax: record? ;
Query response: !record ? <return code> : <cplane return code> : <status>: <group> : <scan number> : <scan name> ;
Purpose: Turn recording on|off or specify UT start time.
Command parameters:

Parameter Type Allowed
values

Default Comments

<action> char on |
 off |

start_time

 ‘on’ immediately starts recording;
‘off’ stops recording ; See Note 5
‘start_time’ specifies UT start time in VEX time format (##y##d##h##m##s)‘. e.g. 12y215d12h45m30s,
See Notes 1-4.

<duration> int seconds If specified, recording will stop after this amount of time; ‘record=off’ command may be used to stop
recording before specified duration is complete.

<data size> int GBytes - Size of the data packet expected to be recorded in this scan; used to judge whether sufficient space exists
on present ‘ready’ volume. See Note 3.

<scan_name> char 32 chars max Relevant only for ‘record=on’ command. If not specified, the current Mark 6 system UT time will be used
to create a scan name in the format ‘scan_xxxx’, where ‘xxxx’ is a Mark6 generated scan serial number

<experiment_name> char 8 chars max expxx Relevant only for ‘record=on’ command; once specified, <experiment name> will be remembered on
subsequent ‘record=on|time’ commands; ‘record=on|time’ with <experiment name> will reset default.

<station_code> char 8 chars max stnxx Relevant only for ‘record=on’ command; once specified, <station name> will be remembered on
subsequent ‘record=on|time’ commands; ‘record=on|time’ with <station name> will reset default.

Query parameters: None
Query response parameters:

Parameter Type Values Comments

<status> char off |
pending |

recording |
flushing

‘off’ – recording currently inactive
‘pending’ – awaiting timed start
‘recording’ – capturing data to RAM and recording to disk
‘flushing’ – flushing RAM buffers to disk after data capture has stopped

<group> int Group to which current recording (or last recording) was made

<scan number> int Mark6-assigned scan serial number within group

<scan name> char Scan name –see Section 6 for definition of scan name.

record
record

25

Notes:
1. Recording always takes place to the ‘open’ group.
2. VEX time format is ‘##y###d##h##m##s’, but may be truncated from left or right as long as it is unambiguous at the time it is issued (e.g.

‘30m10.5s’ will start at specified time within the next hour).
3. While waiting for ‘time’ recording to start, status of ‘open’ group is not allowed to change.
4. An error will be returned if specified ‘start time’ plus the ‘duration’ has passed; If the ‘start time’ has passed, but the ‘end time’ has not, the

recording will capture data from when the command is received (on an integer second), till the ‘end time’ or when ‘record=off’ is issued.
5. A ‘record=<off>’ command will disable ‘start_time’ recording if issued before ‘start_time’; If issued during an active recording, the data

received up till that time will be captured; If issued after the ‘end_time’ and error will be returned.
6. During recording, commands to the system that may interfere with the recording capability of the disks (such as queries for ‘disk_info?’,

‘scan_info’, ‘scan_check’, etc) may be rejected.
7. If the <data size> parameter is specified, cplane will first check the present ‘open’ group for sufficient space. If <data size> is specified and

insufficient space is available, an error will be returned. During or after recording (until the next scan is started), the ‘scan_info?’ query may
be used to return information about the scan

8. For recording performance reasons, once a scan is recorded, there is no mechanism to delete it (without initializing modules within group).

record
record

26

rtime – Get remaining recording time on open group (query only) [command list]
Query syntax: rtime? [<data rate>];
Query response: !rtime ? <return code> : <cplane return code> :

<group> : <data rate> : <remaining time> : <GB remaining> : <GB total> ;

Purpose: Get remaining recording time of open group for specified data rate.

Query parameters:
Parameter Type Allowed values Default Comments

<data rate> real Mbps - Usually will be data rate of next scan to be recorded

Query response parameters:
Parameter Type Values Default Comments

<data rate> real Gbps - Recording rate assumed in calculation of <remaining time>

<remaining time> int seconds - Approximate remaining record time for currently ‘open’ group at specified data rate.

<GB remaining> int GB GB remaining on open group

<GB total storage> int GB GB total available storage on open group

Notes:
1. If an ‘rtime?’ query is issued during recording and <data rate> is not specified, the Mark 6 system estimates the actual aggregate recording data rate and

returns the <remaining time> estimate accordingly.

rtim
e

rtim
e

27

scan_check – Quick check of recorded data (query only) (NYI) [command list]
Query syntax: scan_check? [<scan name|scan#>] : [<group_ref>] ;
Query response: !scan_check ? <return code> : <cplane return code>: <group_ref> : <scan#> : <scan label> : <#streams>
: <stream label1> : <status1> : <data format1> : <start time1> : <duration1> : <datasize1> : <stream rate1> : <missing bytes1>
: <stream label2> : <status2> : <data format2> : <start time2> : <duration2> : <datasize2> : <stream rate2> : <missing bytes2>
: <stream labeln> :…: <missing bytesn>] ;
Purpose: Quick-look check of recorded data from completed scan
Query parameters:

Parameter Type Allowed
values

Default Comments

<scan name|scan#> char/int - Last recorded scan See Note 2.

<group_ref> int - open group group_ref or partial group_ref (i.e. one or more mounted modules of multi-module group)

Query response parameters:
Parameter Type Values Comments

<group_ref> int - Group reference

<scan#> int Mark6-assigned sequential scan# within the group

<scan label> char - Scan label (see Section 6)

<#streams> int - #streams of recorded data

<stream labelx> char - Stream label as defined by ‘input_stream=’ command

<statusx> char OK |
time? |
data?

‘OK’ – data frames and data appear to be normal
‘time?’ – error decoding time in data frames
‘data? – sampled data do not appear to be statistically random; see Note 5

<data formatx> char - Data format (‘vdif’, ‘m5b’, etc)

<start timex> time UT time Time tag decoded from first data-frame in file, in format ##y###d##h##m##ss

<durationx> time seconds Decoded time interval between first and last data-frames of scan

<data sizex> real GB Total data recorded (GB) from data �tream; see Note 6

<stream data ratex> real Gbps Inferred stream data rate (Gbps) based on starting/ending time tags and <file size>; see Note 6.

<#missing bytes> int int #bytes missing from recording

scan_check
scan_check

28

Notes:
1. ‘record?’ status must be ‘off’ when doing scan_check; attempting scan_check during recording will return an error.
2. ‘scan#’ is the Mark6-assigned sequential scan# within the group.
3. ‘group_ref’ may be a full group reference or partial group reference (i.e. one or more mounted modules of multi-module group)
4. <data format> is taken from scan metadata recorded in the group directory; supported suffixes are ‘vdif’ and ‘m5b’ (plugins may be developed

to support other data formats).
5. ‘scan_check’ examines a small amount of data near the scan start and stop points; the data are decoded according to the specified format.
6. Statistical randomness of data is based on a small sample of data at both beginning and end of scan; not authoritative, but should be looked at.
7. Mark 6 records entire Ethernet frames, which is taken into account in calculating <stream data rate>.

scan_check
scan_check

29

scan_info – Get scan information (query only) (NYI) [command list]
Query syntax: scan_info? [<scan name|scan#>] : [<group_ref>] ;
Query response: !scan_info ? <return code> : <cplane return code> : <group_ref> : <scan#> : <scan label> :

<status> : <start time> : <duration> : <#data streams> : ,<system performance code> ;
Purpose: Get summary information on scan
Query parameters:

Parameter Type Allowed
values

Default Comments

<scan name|scan#> char/int - Last recorded scan See Note 2.

<group_ref> int - open group group_ref or partial group_ref (i.e. one or more mounted modules in multi-module group)

Query response parameters:
Parameter Type Values Comments

<group_ref> int - Group reference

<scan#> char - Mark6-assigned sequential scan# within the group

<scan label> int - Scan label (see Section 6)

<status> char recording |
pending |
flushing |
complete

‘recording’ – capturing data to RAM and recording to disk
‘pending’ – awaiting timed start
‘flushing’ – flushing RAM buffers to disk after data capture has stopped
‘compete’ – all data recorded to disk

<start time> time UT time Recording UT start time in format ‘##y###d###h##m##ss’, where ‘#’ is a digit.

<duration> int seconds Recording duration in seconds

<#data streams> int - # of data streams in scan; corresponds to # of files per disk (one file per data stream)

<system performance code> int - Code indicating system performance. See Note 3

Notes:
1. The ‘scan_info?’ may be rejected if the system is too busy during active recording.
2. ‘scan#’ is the Mark6-assigned sequential scan# within a group.
3. ‘quality code’ is intended to be a indication of the performance of the Mark 6 on the basis on cplane internal metrics; for example, excessive buffer overflow

or unequal distribution of data to disks (indicative of one or more ‘slow’ disks); actual codes and meanings TBD.

scan_info
scan_info

30

status – Get detailed Mark 6 system status (query only) [command list]
Query syntax: status? ;
Query response: !status ? <return code> : <cplane return code>: <status word> ;

Purpose: Get detailed Mark 6 system status

Query parameters: None

Query response parameters: (TBD by software author)
Parameter Type Values Comments

<status word> hex - Bit 0 – (0x0001) system ‘ready’
Bit 1 – (0x0002) error message(s) pending; (message may be appended); messages may be queued; error is
cleared by this command. See also ‘error?’ query
Bit 2 – (0x0004) one or more ‘delayed-completion’ commands are pending. Also set whenever any data-
 transfer activity, such as recording.
Bit 3 – (0x0008) one or more ‘delayed-completion’ queries are pending

Bit 4 – (0x0010) record ‘on’
Bit 5 – (0x0020) media full (recording halted)
Bit 6 - (0x0040) burst mode
Bit 7 - (0x0080) recording can’t keep up; some lost data

Bit 8 - (0x0100) dplane is operational
Bit 9 - (0x0200) dplane is configured to accept data
Bit 10 – (0x0400) not used
Bit 11 – (0x0800) not used

Bit 12 – (0x1000) Bank 1 selected
Bit 13 – (0x2000) Bank 1 ready
Bit 14 – (0x4000) Bank 1 media full or faulty (not writable)
Bit 15 – (0x8000) Bank 1 write protected

Bit 16 – (0x10000) Bank 2 selected
Bit 17 – (0x20000) Bank 2 ready
Bit 18 – (0x40000) Bank 2 media full or faulty (not writable)
Bit 19 – (0x80000) Bank 2 write protected

Bit 20 – (0x100000) Bank 3 selected
Bit 21 – (0x200000) Bank 3 ready
Bit 22 – (0x400000) Bank 3 media full or faulty (not writable)
Bit 23 – (0x800000) Bank 3 write protected

Bit 24 – (0x1000000) Bank 4 selected
Bit 25 – (0x2000000) Bank 4 ready
Bit 26 – (0x4000000) Bank 4 media full or faulty (not writable)
Bit 27 – (0x8000000) Bank 4 write protected

status
status

31

sys_info – Get Mark 6 configuration details (query only) [command list]
Query syntax: sys_info? ;
Query response: !sys_info ? <return code> : <cplane return code> :

<system type> : <Mark 6 S/N> : <OS type/rev> : <cplane version number> :
<command set revision> : <available RAM> :<#data disks supported> :
<#Ethernet input ports> : <portref1> : <portspeed1>:<address1>:<state1> :…. : <portrefn> :
<portspeedn> ;

Purpose: Get Mark 6 configuration details

Query parameters: None

Query response parameters:
Parameter Type Values Comments

<system type> char Mark6

<Mark 6 serial number> char Assigned system serial number; generally in the form ‘Mark5-4xxx’

<OS type/revision> char example: ‘Ubuntu 10.10’

<cplane version number> char Version number of cplane

<command set revision> char Mark 6 DIM command set revision level corresponding to this software release (e.g. ‘1.0’)

<available RAM> int Available burst-mode RAM (GB)

<#data disk supported int max# data disks supported on system

<#Ethernet input ports> int #Ethernet ports available for data input

<portrefx> char Port reference name to be used in ‘input_stream” command (e.g. ‘eth0’)

<portspeedx> int 1 | 10 Nominal Ethernet speed (Gbps) (e.g. ‘1’ or ‘10’)

<address> ascii xx.xx.xx.xx IPv4 Address assigned to interface

<state> char up | down State if the network interface. See Note 1.

Notes:
1. If the Ethernet interface is down, the operator must log-in as root and configure and/or re-establish the Ethernet connection

sys_info
sys_info

